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1 Introduction

Algebraic Geometry is the study of algebraic varieties, their classification. What classification means?

1. attaching numbers and invariants to varieties to distinguish them;

2. grouping varieties according to invariants and characteristics;

3. construct moduli spaces.

Birational Geometry: solving the classification problem using birational technique. The strategy:

1. X projective variety,

2. resolution of singularities W → X,

3. find a nice model W
bir
99K Y ,

4. classify such Y ,

5. get information about original X.

Example 1.1 (Curves). Let X be a projective variety with dimX = 1. Let W → X be the normalisation =

resolution of singularities. Then W uniquely determined. Take Y = W . Define g = genus of Y = h0(ωY ).
Over the complex setting, it is the number of holes topologically.

All such Y with fixed g form a moduli space Mg. Note if Y ⊆ P2 is of degree d, then

g =
1

2
(d− 1)(d− 2).

Definition 1.2 (Canonical divisor/bundle). Let X be a smooth projective variety with dimX = d.
ΩX sheaf of 1-differential forms.
ωX = ∧dΩX is the canonical sheaf of X.
ωX ≃ OX(KX), KX is the canonical divisor of X.
KX = divisor of a rational d-differential form.
The canonical divisor/sheaf is of fundamental importance in algebraic geometry just as differential forms

are in differential geometry.

Example 1.3. 1. KPd = −(d+ 1)H, H ⊆ Pd hyperplane.

2. X ⊆ Pd, hypersurface of degree l, KX = (l − d− 1)H|X .

Definition 1.4 (Kodaira dimension). X smooth projective variety, d = dimX.
Pm = h0(X,mKX) the m-th pluri-genus.
κ(X) = Kodaira dimension of X is the largest number in Z ∪ {∞} such that

lim sup
m→∞

h0(X,mKX)

mκ(X)
> 0.

Can show κ(X) ∈ {−∞, 0, 1, . . . , d}.

Example 1.5. X smooth projective curve.
κ(X) = −∞ ⇐⇒ degKX < 0 ⇐⇒ X = P1 ⇐⇒ g = 0.
κ(X) = 0 ⇐⇒ degKX = 0 ⇐⇒ X elliptic ⇐⇒ g = 1.
κ(X) = 1 ⇐⇒ degKX > 0 ⇐⇒ X general type ⇐⇒ g ≥ 2.
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1.1 Special varieties

Let X projective variety with “good” singularities.

1. X is Fano if −KX is ample (κ(X) = −∞)

2. X is Calabi-Yau if KX ≡ 0 (κ(X) = 0)

3. X is canonically polarised if KX is ample (κ(X) = dimX)

Exercise 1.6. Examine this classes of varieties for curves.

1.2 A fundamental conjecture

Let X be a projective variety. Then exists birational map X 99K Y where Y has good singularities and either

1. Y admits a Fano fibration, or

2. Y admits a Calabi-Yau fibration, or

3. Y is canonically polarised.

1.3 How to find Y ?

X projective variety.

W → X resolution of singularities, (conjectural if char. > 0).

Run the minimal model program (MMP) on W ;

W =W1 99KW2 99KW3 99K · · · 99KWn = Y.

Show Y satisfies Section 1.2.

Establishing this procedure consists of an enormous amount of beautiful ideas, results and conjectures of
global and local nature.

Note: the canonical ring of W is

R(W ) :=
⊕
m≥0

H0(W,mKW ).

If κ(X) = dimW , then Y = ProjR(W ). If 0 ≤ κ(W ) < dimW , then we expect a Calabi-Yau fibration
Y → ProjR(W ). If κ(W ) = −∞, then we expect a Fano fibration Y → Z.

1.4 The MMP for curves

Let W be a smooth projective curve. Running the MMP on W does not change W . That is, Y =W .
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1.5 MMP for surfaces

Let W be a smooth projective surface.
E ⊆W is a −1-curve if E ≃ P1 and E2 = degE|E = −1.
If exists −1-curve E ⊆W , then exists

W =W1
bir // W2

E //

⊂

pt.

∈

If exists −1-curve W2, we can contract it, etc.
We get

W =W1

where Y has no −1-curve.
Can show Y satisfies Section 1.2.

1. κ(W ) = −∞ =⇒ Y ≃ P2, or exists a P1-bundle Y → Z.

2. κ(W ) = 0 =⇒ KY ≡ 0, Y Calabi-Yau.

3. κ(W ) = 1 =⇒ ∃ elliptic fibration Y → T .

4. κ(W ) = 2 =⇒ KY “almost ample”, can modify Y , such that KY ample.

1.6 Singularities

In dimension 1 and 2, can mostly work with smooth varieties.
In dimension ≥ 3, necessary to allow “good” singularities.
This makes the theory more complicated but much more exciting.
Local behaviour of singularities often corresponding to global behaviour of some varieties.
In dimension 2, we have a detailed classification of “good” singularities.

Example 1.7. C ⊆ P2 defined by x2 + y2 + z2 = 0. (coordinates on P2)
X = cone over C = surface ⊆ A3 defined by x2 + y2 + z2 = 0. (coordinates on A3)
Blowing up (0, 0, 0) on A3 resolves the singularity (0, 0, 0) on X:

V // X

E

⊂

// (0, 0, 0).

∈

where E = exceptional curve ≃ C.

1.7 Tools

Birational geometry uses many general and special tools of algebraic geometry.
Resolution of singularities is often used.
Cohomology is used often to proceed by induction.
In particular, the Kodaira vanishing theorem is often used:
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Theorem 1.8. X smooth projective variety (char. = 0)
Let A be an ample divisor on X. Then

hi(X,KX +A) = 0, ∀i > 0.

When char > 0, Frobenius is instead used.

1.8 Some history

– dim1, many people in 19th century, epically Riemann.

– dim2, many people in the 19th and early 20th centuries, especially Noether, Enrique, Castelnuovo.

– dim3, some work by Fano Severi, Zariski, ..., in the first half of 20th century, then big advances by
Hironaka, Iitaka, Iskovskikh, Ueno, Shokurov, Mori, Kawamata, Reid, Kollár, Miyaoka, ..., in 1970’s –
1990’s.

– dim ≥ 4, big advances from 2000’s by Shokurov, Hacon-McKernan, Birkar, Cascini, Xu, ...

1.9 Topics in this course

Through the year

1. curves

2. surface

3. singularities

4. pairs

5. explicit geometry, e.g., toric geometry

6. MMP

7. base point freeness, cone and contraction theorems

8. Mori’s bend and break technique

9. existence of minimal models

10. finite generation of canonical rings

11. special varieties: Fano, Calabi-Yau and canonically polarised varieties

12. boundedness and moduli of varieties

13. Sarkisov program

14. irrationality of some Fano varieties

15. generalised pairs

16. etc.
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1.10 General references

1. Hartshorne, Algebraic geometry

2. Kollár–Mori, Birational geometry of algebraic varieties

3. Birkar, Lectures on birational geometry

4. Matsuki, Introduction to Mori’s program

5. Debarre, Higher dimensional algebraic geometry

6. Kawamata-Matsuda–Matsuki, Introduction to the minimal model problem

7. etc.
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2 Curves

2.1 Assumption

Let k be an algebraically closed field with characteristics 0. From now on we work over k in this course.
Varieties are quasi-projective.

2.2 Recall

Suppose that X is a normal variety. Let D =
∑
diDi be a divisor on X. Then OX(D) is the sheaf associated

to D. For U ⊆ X open subset,

OX(D)(U) = {f ∈ k(X) | Div(f) +D|U ≥ 0} ∪ {0}

where K(X) is the function field of X, i.e., the field of rational functions on X. Put

Hi(X,D) := Hi(X,OX(D)), hi(X,D) := dimHi(X,OX(D)).

Definition 2.1 (Genus). Let X be a smooth projective curve. The genus of X is g(X) = h0(X,KX), where
KX is the canonical divisor of X, i.e., the divisor of a rational differential form. We have OX(KX) = ωX = ΩX ,
the sheaf of differential forms. When k = C, g(X) = the number of holes when we consider X as a Riemann
surface.

Example 2.2 (P1). We have KP1 = −2q, where q is any point on P1. Since degKP1 < 0, there does not
exist f ∈ k(P1) such that Div(f) +KP1 ≥ 0. Hence g(P1) = h0(P1,KP1) = 0. When k = C, X is a Riemann
sphere (with complex structure).

Theorem 2.3 (Riemann-Roch). Suppose that X is a smooth projective curve, and D =
∑
diDi be a divisor

on X. Then

h0(X,D)− h0(X,KX −D) = h0(X,D)− h1(X,D) = degD + 1− g(X).

Here degD =
∑
di.

Proof of Theorem 2.3. First equality follows from Serre duality. For second equality, note that it holds for
D = 0. Then argue that it holds for D if and only if it holds for D − x for any point x ∈ X, using the exact
sequence

0 −→ OX(D − x) −→ OX(D) −→ k −→ 0

and the long exact sequence associated to this.

Corollary 2.4 (degree of KX). Let X be a smooth projective curve. Then degKX = 2g(X)− 2.

Proof. This can be seen by applying Riemann-Roch:

g(X)− 1 = h0(X,KX)− h0(X,KX −KX) = degKX + 1− g(X).



2.3 Types of curves 7

2.3 Types of curves

Let X be a smooth projective curve. Let κ(X) be the Kodaira dimension of X. From the Riemann-Roch we
can get:

(a) g(X) = 0 ⇐⇒ degKX < 0 ⇐⇒ X ≃ P1 ⇐⇒ κ(X) = −∞;

(b) g(X) = 1 ⇐⇒ degKX = 0 ⇐⇒ X is elliptic ⇐⇒ κ(X) = 0;

(c) g(X) ≥ 2 ⇐⇒ degKX > 0 ⇐⇒ X is general type ⇐⇒ κ(X) = 1.

2.4 Elliptic curves

Let X be a smooth projective curve. Let Div(X) be the group of divisors on X. Let Cl(X) = Div(X)/ ∼
and Cl(X)0 = {D ∈ Cl(X) | degD = 0}.

Now assume g(X) = 1, i.e., X is elliptic. Fix a point y ∈ X and define

α : X −→ Cl(X), x 7−→ x− y.

Then α(x) = α(x′) =⇒ x− y ∼ x′− y =⇒ x ∼ x′ =⇒ ∃f ∈ k(X) such that Div(f) = x− x′. This f must
be constant, otherwise f defines a map f : 99K P1 of degree 1. So X ≃ P1, a contradiction. Therefore, x = x′.

Also, α is surjective. Take D ∈ Cl(X)0 =⇒ deg(D + y) = 1, then by Riemann-Roch h0(X,D + y) = 1.
There is f ∈ k(X) such that Div(f) +D + y ≥ 0. But deg(Div(f) +D + y) = 1, so x := Div(f) +D + y is a
point. Thus D ∼ x− y = α(x).

Therefore, α is bijective. So the group structure on Cl(X)0 gives a group structure on the set of closed
points of X.

Definition 2.5 (Base point free and ample and very ample divisors). Let X be a normal variety, and D a
divisor on X. We say that D is base point free if ∀x ∈ X,∃f ∈ k(X) such that x ̸∈ Div(f) +D ≥ 0 where
f ∈ H0(X,D). We say that D is very ample if there exists an embedding h : X ↪→ Pn such that D ∼ h∗H
for some hyperplane H ⊆ Pn. We say that D is ample if mD is very ample for some m ∈ N.

Theorem 2.6. Let X be a smooth projective curve, and D a divisor on X.

(1) If degD ≥ 2g(X), then D is base point free.

(2) If degD ≥ 2g(X) + 1, then D is very ample.

(3) If degD > 0, then D is ample.

Proof. (1) Pick x ∈ X. By Riemann-Roch

h0(X,D)− h0(X,KX −D) = degD + 1− g(X),

h0(X,D − x)− h0(X,KX −D + x) = deg(D − x) = 1− g(X) = deg(D)− g(X).

Since degD ≥ 2g(X),

deg(KX −D) < 0 =⇒ h0(X,KX −D) = 0,

deg(KX −D + x) < 0 =⇒ h0(X,KX −D + x) = 0.
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Thus
h0(X,D − x) = h0(X,D)− 1.

This means, there exists some f ∈ H0(X,D) such that x ̸∈ Div(f) +D. So D is base point free.
(2) By (1), D is base point free. If f0, . . . , fn is a basis of H0(X,D) as a k-vector space. Then we get a

map
h : X 99K Pn, x 7−→ (f0(x) : · · · : fn(x)).

Since D is free, h is a morphism, and D ∼ h∗H for some hyperplane H. Now if x, y ∈ X, similar to (1), we
have

h0(X,D − x− y) = h0(X,D)− 2.

In particular, if x ̸= y, we can find f ∈ H0(X,D) such that x ∈ Div(f) +D while y ̸∈ Div(f) +D (essentially
says f(x) = 0 but f(y) ̸= 0). This is possible only if h is injective. Moreover, it also implies we can choose
the hyperplane H such that h∗H has multiplicity 1 at x. One then shows this is possible inly if h(X) is
smooth, so h gives an isomorphism

X −→ h(X) ⊆ P1.

Hence h is an embedding and D is very ample.
(3) degD > 0 =⇒ ∃m ∈ N such that degmD ≥ 2g(X) + 1 =⇒ mD is very ample by (2) =⇒ D is

ample.

Corollary 2.7. Let X be a smooth projective curve with g(X) ≥ 2. Then

(1) KX is base point free.

(2) 3KX is very ample, so defines an embedding X ↪→ P5(g−1)−1.

Proof. (1) If x ∈ X, then by Riemann-Roch

h0(X,KX − x)− h0(X,KX −KX + x) = degKX − 1 = 1− g.

But h0(X,x) = 1, otherwise there exists a non-constant f ∈ k(X) such that Div(f) + x ≥ 0. Then
Div(f) + x consists of just one point. So f defines an isomorphism f : X → P2, a contradiction. Then
h0(X,KX − x) = g − 1 = h0(X,KX)− 1. As in the proof of the theorem, this implies KX is base point free.

(2) g(X) ≥ 2 =⇒ deg 3KX = 3(2g(X) − 2) ≥ 2g(X) + 1 =⇒ 3KX is very ample by the theorem
=⇒ 3KX defines an embedding X ↪→ Pn where n = h0(X, 3KX)− 1. By Riemann-Roch,

h0(X, 3KX)− h0(X,KX − 3KX) = deg 3KX + 1− g(x) = 5(g(X)− 1).

Remark 2.8. Using other argument, it is possible to find an embedding X ↪→ P3 for every smooth projective
curve.

2.5 Moduli

Fix g ≥ 0. Fact: there exists a variety Mg such that

closed points of Mg ↔ {smooth projective curves of g(X) = g, up to isomorphism}.

For example, M0 = one point. It is well-known that M1 = A1. And that dimM2 = 3. Fact: dimMg = 3g− 3

for g ≥ 2.
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Example 2.9. Let us take g = 3. One shows that for most smooth projective curves of g(X) = 3, KX is
very ample, so defines an embedding

X ↪→ P2.

Then one shows degX = 4 under this embedding. However, this embedding is not unique. Any automorphism
of P2 gives another embedding. The smooth curves in P2 of degree 4 are parametrised by an open subset
U ⊆ P14. This is because the number of coefficients of a general degree 4 homogeneous polynomial is 15. So
we have a dominant map U →M3, where the general fibres have the same dimension as Aut(P2). One then
calculates dimAut(P2) = 8, so dimM3 = 14− 8 = 6 = 3g − 3.
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3 Surfaces

3.1 Adjunction formula

Let X be a smooth variety, S ⊆ X a smooth prime divisor. Adjunction formula:

KS ∼ (KX + S)|S .

Let X = Pn, and S a hypersurface of degree d. Then KX ∼ −(n+ 1)H where H is a hyperplane. So,
KS ∼ (KX + S)|S ∼ (−(n+ 1)H + dH)|S = (d− n− 1)H|S .

If n = 2, degKS = (d− 3)d. Since degKS = 2g(S)− 2, we get g(S) = 1
2 (d− 1)(d− 2).

3.2 Blowup

Consider An with coordinates t1, . . . , tn, and Pn−1 with coordinates a1, . . . , an. Let Y ⊆ An × Pn−1 be given
by the equations

tisj − tjsi = 0.

Let π : Y → An be induced by the projection An×Pn−1 → An. Easy to see that Y is smooth, π−1{0} ≃ Pn−1

(exceptional divisor) and Y \ π−1{0} → An \ {0} is an isomorphism.

One can similarly define blowup of x ∈ X for any smooth variety X using local coordinates. One can also
define blowup of a subvariety V ⊆ X for any smooth V,X.

Lemma 3.1. Let X be a smooth projective surface, π : Y → X the blowup of x ∈ X. Let E := π−1{0} be the
exceptional curve. Then

E ≃ P1 and E2 = −1.

Proof. The fact that E ≃ P1 follows from the definition of blowups. Pick a smooth curve C ⊆ X passing
through x. We can see

π∗C = C̃ + E

and

C̃ ∩ E = one point, transversal.

So,

(π∗C) · E = deg(π∗C)|E = 0

(π∗C) · E = (C̃ + E) · E = C̃ · E + E · E = 1 + E2.

Hence E2 = −1.

3.3 (−1)-curves

Let X be a smooth surface, E ⊆ X a smooth curve. We say that E is a −1-curve if

E ≃ P1 and E2 = −1.

Lemma 3.1 says that exceptional curves of a blowup is a −1-curve.



3.3 (−1)-curves 11

Theorem 3.2 (Castelnuovo). Let X be a smooth projective surface, E ⊆ X a curve. Then E is a −1-curve
if and only if E is the exceptional curve of a blowup.

Proof. ⇐= is Lemma 3.1.

=⇒ Idea: find a base point free divisor L. Use its global section to define a morphism X → Z. Ensure
that only E is “contracted”.

Pick a very ample divisor A such that H1(X,A) = 0. This is possible by Serre vanishing. Put ℓ = A · E.
Claim: H1(X,A+ iE) = 0,∀0 ≤ i ≤ ℓ.

Case i = 0 holds by assumption.

From the exact sequence

0 −→ OX(−E) −→ OX −→ OE −→ 0

we get

0 −→ OX(A+ (i− 1)E) −→ OX(A+ iE) −→ OE((A+ iE)|E) −→ 0. (3.1)

The long exact sequence of cohomology gives

· · · → H1(X,A+ (i− 1)E)→ H1(X,A+ iE)→ H1(E, (A+ iE)|E)→ . . .

Note that deg(A+ iE)|E = A ·E + iE ·E = ℓ− i ≥ 0 for 0 ≤ i ≤ ℓ. So, H1(E, (A+ iE)|E) = 0 for 0 ≤ i ≤ ℓ
as E ≃ P1. Thus

H1(X,A+ (i− 1)E) = 0 =⇒ H1(X,A+ iE) = 0, 0 ≤ i ≤ ℓ.

So use induction on i.

Put L := A+ ℓE.

Claim: L is base point free.

Since A is very ample, ∀x ∈ X \ E, we can find s ∈ H0(X,L) such that s(x) ̸= 0. So L is base point free
outside E. From the exact sequence Eq. (3.1), we get

H0(X,L)
λ−→ H0(E,L|E)→ H1(X,A+ (ℓ− 1)E) = 0.

So λ is surjective. But L|E ∼ 0 is base point free. So for each x ∈ E, we can find t ∈ H0(E, , L|E) such that
t(x) ̸= 0. As λ is surjective, we can find s ∈ H0(X,L) such that s(x) ̸= 0. Thus L+ A+ ℓE is base point
free everywhere.

Now using a basis of H0(X,L) we can define a morphism

α : X → Pn, n = h0(X,L)− 1

such that L ∼ α∗H for some hyperplane H ⊆ Pn. Let Z be the normalisation of α(X). We then get
π : X → Z. Now if C ⊆ X is contracted by π, then L · C = 0. But then C = E be definition of L. So, π
contracts only E.

Finally one shows that Z is smooth using certain argument, and uses properties of blowups to show that
π is the blowup of the point z ∈ π(E).
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3.4 Minimal Model Program (MMP)

Let X be a smooth projective surface. We run the MMP on X. Put X1 = X. If there exists −1-curve
E1 ⊆ X1, we can contract it by Theorem 3.2:

X1 → X2.

If there exists −1-curve E2 ⊆ X2, we contract it, and so on

X = X1 → X2 → · · · → Xn.

Fact: this process stops after finitely many steps. This is essentially for topological reasons. So we get
Y := Xn which has no −1-curves. We say that Y is a minimal model of X if KY is nef, i.e.,

KY · C ≥ 0, ∀ curves C ⊆ Y.

Later we see that whenKY is not nef, we have a fibration Y → T whose general fibres are Fano, dimY > dimT .
We say that Y → T is a Mori fibre space for X.

Facts: either Y ≃ P2 → T = pt., or Y → T is a P1-bundle and T is a smooth curve.
Some ideas how to get Y → T . Pick an ample divisor A on Y and let t ∈ R be the smallest number such

that KY + tA is nef. We will see that t ∈ Q>0 and m(KX + tA) is base point free for some m ∈ N.
So, m(KY + tA) defines a nontrivial morphism Y → T .
To summarise: running MMP on any smooth projective surface X ends with a smooth projective surface

Y ,
X 99K Y

such that either Y is a minimal model (KY is nef), or there exists a Mori fibre space Y → T with
Y ≃ P2 → T = pt. or Y → T is a P1-bundle with T a smooth curve.

3.5 Classification of surfaces

Let X be a smooth projective surface. Let X 99K Y be an MMP. Recall κ(X), the Kodaira dimension of X.
It is not hard to see that κ(X) = κ(Y ).

If κ(Y ) ≥ 0, then Y is a minimal model: h0(Y,mKY ) ̸= 0 for some m ∈ N implies that there exists
0 ≤ D ∼ mKY . Then Y cannot admit a Mori fibre space Y → T . Because D|F ∼ mKY |F for general fibres
f of Y → T .

Fact:

κ(Y ) ≥ 0 ⇐⇒ Y minimal model

κ(Y ) = −∞ ⇐⇒ Y admits Mori fibre space Y → T

Moreover, when κ(Y ) ≥ 0, mKY is base point free for some m ∈ N defining a Calabi-Yau fibration:

Y → V

with κ(Y ) = dimV

One can then attempt to classify the Y for each κ(Y ). This leads to the moduli theory.
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4 Quadric Surfaces

We will study hypersurfaces X ⊆ P3 of low degree.

4.1 Hyperplanes

Let X ⊆ P3 be a hypersurface of degree 1. Then X is defined by homogeneous polynomial of degree 1, say F .
After linear change of variables, can assume F = w, where x, y, z, w are coordinates on P3. So, P2 → X ⊆ P3,
(a : b : c) 7→ (a : b : c : 0) is an isomorphism.

4.2 Quadric surfaces

A quadric surface X is a hypersurface ⊆ P3 of degree 2, that is, defined by an irreducible homogeneous
polynomial F of degree 2.

Fact: after linear change of variables, can assume F = xy − zw if X is smooth and F = x2 + y2 + z2 if X
is singular.

4.3 Singular quadric surface

Let X ⊆ P3 be defined by x2 + y2 + z2 = 0. Then u = (0 : 0 : 0 : 1) is the singular point. In fact, X is the
cone over conic C ⊆ P2 defined by x2 + y2 + z2 = 0 (C ≃ P1).

Let π : V → P3 be the blowup at u, and E be the exceptional divisor (≃ P2). Let Y be the birational
transform of X. Then Y → X has one exceptional curve C ⊆ E ≃ P2, given by x2 + y2 + z2 = 0.

C �
�

//

��

Y �
�

//

bir
��

V

��

E? _oo

��
u �
�

// X �
�

// P3 u.? _oo

Note that C ≃ P1. One can check that Y is smooth. Also,

C2 = (C · C)Y = ((E|Y ) · C)Y = (E · C)V = (E|E) · C = −L · C = −2,

where L ⊆ E is a line. So Y → X is a resolution of singularities with one exceptional curve C with C2 = −2.
On the other hand, we have that V is a P1-bundle over P2.

V

~~

P1-bundle

  

P3 P2.

From this we get that Y is a P1-bundle over P1.

Y

��

P1-bundle

  

X P1.

Exercise 4.1. Show that X is birational to P2.
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4.4 Smooth quadric surface: P1 × P1

Let X ⊆ P3 be defined by xy − zw = 0. Note hard to show X ≃ P1 × P1. This is done by considering the
Segre map α : P1 × P1 −X ⊆ P3, (a : b), (c : d) 7→ (ac : bd : bc : ad).

4.5 Lines on a smooth quadric

Let X ⊆ P3 be defined by xy − zw = 0. The isomorphism P1 × P1 → X induces two fibrations. For each
fibre of either fibration, α(L) ⊆ P3 is a line., where α is the Segre map above. This means: α(L) ·H = 1

for a hyperplane H ⊆ P3. Equivalently, α(L) is the intersection of two hyperplanes in P3. For example, if
L = P1 × (c : d), with c, d fixed. Then

α(L) = {(ac : bd : bc : ad) | (a : b) ∈ P1}

is the intersection of the two planes defined by dx− cw = 0 and cy − dz = 0.

4.6 Class group of a smooth quadric

Let X ⊆ P3 be defined by xy − zw = 0. Then X ≃ P1 × P1. Let Cl(X) = groups of divisors on X modulo
linear equivalence. We show Cl(X) ≃ Z× Z. Pick any divisor D on P1 × P1. Let L1, L2 be fibres of the two
projections. We show that D m1L1 +m2L2 for some m1,m2 ∈ Z. Since L1 · L2 = 1, there exists m1 ∈ Z
such that (D −m1L1) · L2 = 0. In fact, (D −m1L1) · L = 0 for any fibre L of the second projection. In
particular, deg(D −m1L1)|G = 0 where G is the generic fibre of f2. So, D −m1L1 0. So, D −m1L‘ ∼ B

for some B such that B ∩G = ∅. So B =
∑
niRi ni ∈ Z and Ri are fibres of f2. But Ri ∼ L2 for any i, so

B ∼
∑
niL2. So D ∼ m1L1 +m2L2 with m2 =

∑
ni. We have shown that L1, L2 generate Cl(P1 × P1).

Note that m1 = D · L2 and m2 = D · L1. If m1L1 +m2L2 0, the m1 = m2 = 0 by calculating intersection
numbers with fibres of f1, f2.

Therefore, Cl(X) ≃ Cl(P1 × P1). Hence X ̸≃ P2.

4.7 Curves on smooth quadric surfaces

Recall: C ⊆ P2 smooth curve of degree d. Then g(C) = 1
2 (d− 1)(d− 2). So there is no smooth curve in P 2

of genus 2, 4, 5, . . . .

Now assume X ⊆ P3 be a smooth quadric surface. Let C ⊆ X be a smooth curve. Then C m1L1 +m2L2

for some m1,m2 ∈ Z. We say that C is of bi-degree (m1,m2).

On the other hand, KP1×P1 = −2L1 − 2L2 because

(KP1×P1)|L1
∼ KL1

and (KP1×P1)|L2
∼ KL2

,

and (KP1×P1) · L1 = −2 = (KP1×P1) · L2. Thus using adjunction

KC ∼ (KP1×P1 + C)|C ,

we get

2g(C)− 2 = degKC = (−2L1 − 2L2 +m1L1 +m2L2) · (m1L1 +m2L2) = 2m1m2 − 2m1 − 2m2
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since L2
1 = 0 = L2

2 and L1 · L2 = 1. Therefore, g(C) = (m1 − 1)(m2 − 1).
In particular, for any integer g ≥ 0, we can find a smooth curve C ⊆ X with g(C) = g. Choose m1,m2 ∈ Z

such that g = (m1 − 1)(m2 − 1), and then choose C ∼ m1L1 +m2L2. Hence we used

Exercise 4.2. For any m1,m2 ≥ 0, m1L1 +m2L2 is base point free.

We also used Bertini’s theorem.

Remark 4.3. It is well-known that any smooth projective curve can be embedded in P3.
Show that every smooth projective curve cannot be embedded in some smooth quadric quadric surface

X ⊆ P3. Use hyperelliptic curves.

4.8 Smooth quadric surfaces are rational

Let X ⊆ P3 be defined by xy − zw = 0. We show that X is birational to P2, so X is rational. Enough to
show that P1 × P1 is birational to P2. Well, A1 ×A1 is obvious an open subset of P1 × P1. But A2 = A1 ×A1

is also an open subset of P2. So we get a birational map P1 × P1 99K P2.
We want to understand this map more detail.
Let L1, F1 be the fibres of f1, and L2, F2 the fibres of f2. Let u = F1 ∩ F2. Note that F 2

1 = 0 = F 2
2 . Let

π : V → P1 × P1 be the blowup on u, and E the exceptional curve. Then E2 = −1, F ′2
1 = −1 and F ′2

2 = −1.
To see this, use π∗Fi = F ′

i + E and π∗Fi · E = 0. So, E,F ′
1, F

′
2 are (−1)-curves on V . By Theorem 3.2, we

can run an MMP on V . First contract F ′
1: V → W and then contract F ′

2: W → Y . Since Cl(P1 × P1) is
generate by L1, L2. We can check that Cl(Y ) is generated by the birational transform of any of E,L1, L2.
So, Cl(Y ) ≃ Z. But then again, Y ≃ P2.

V

π

��

  

MMP

��

W

!!

X ≃ P1 × P1 // Y ≃ P2

Smooth quadric surface X ≃ P1 × P1 is a Fano variety.
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5 Cubic Surfaces

We work over an algebraically closed filed k of characteristic 0.

5.1 Cubic surfaces

A cubic surface S ⊂ P3 is given by a nonzero cubic equation∑
i+j+k+l=3, i,j,k≥0

aijklx
iyjzkwl = 0,

where aijkl ∈ k, not all zero.

We usually consider smooth cubic surfaces.

Example 5.1. Fermat cubic surface. S : x3 + y3 + z3 + w3 = 0.

5.2 Lines on surfaces

In this section, to see the power of moduli space, we study lines lying on surfaces.

The hypersurfaces of Pn, defined by equations of degree m, are in one-to-one correspondence with points
of a projective space PN , where N =

(
n+m
m

)
− 1.S : ∑

i+j+k+l=3, i,j,k,l≥0

aijklx
iyjzkwl = 0

↔ {(. . . , aijkl, . . . ) ∈ P19}

The Grassmannian variety Grass(r, V ) parametrises r-dimensional vector subspace Lr ⊆ V . So the lines in
P3 can be parametrised by Grass(2, V ), where dimV = 4. The Grassmannian variety is a projective variety
in P(∧rV ) defined by Plüker equations. In particular, Grass(2, V ) is the quadric hypersurface Π ⊂ P5 defined
by

p01p23 − p02p13 + p03p12 = 0.

Let

Γm = {(ξ, η) ∈ PN ×Π | the line l corresponding to

Π ⊂ the hypersurface X corresponding to ξ ∈ PN}.

Lemma 5.2 (incidence relation). Γm ⊂ PN ×Π is closed.

Proof. Let l ⊂ P3 = P(V ) be a line, where V is a vector space of dimension 4. Then l corresponding to a
2-dimensional subspace L of V . Let L = Span{x, y}, where x, y ∈ V are two vectors.

Let e0, e1, e2, e3 be a basis of V . Then

x = x0e0 + x1e1 + x2e2 + x3e3, y = y0e0 + y1e1 + y2e2 + y3e3,

here xi, yi ∈ k. Then x ∧ y =
∑
i<y(xiyj − xjyi)ei ∧ ej . So the Plüker coordinates of l is pij = xiyj − xjyi.

All vectors in L has form xf(y)− yf(x), where f runs through all linear functional of V ∗. Suppose

f = α0e
∗
0 + α1e

∗
1 + α2e

∗
2 + α3e

∗
3,
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where αi ∈ k. Then

xf(y)− yf(x)

= x(α0y0 + α1y1 + α2y2 + α3y3)− y(α0x0 + α1x1 + α2x2 + α3x3)

= (x0(α0y0 + α1y1 + α2y2 + α3y3)− y0(α0x0 + α1x1 + α2x2 + α3x3) + . . .

= z0e0 + z1e1 + z2e2 + z3e3,

where
zi =

∑
j

αjpij .

Let Xm ⊂ P3 be a degree m hypersurface defined by

F (x, y, z, w) =
∑

i+j+k+l=m, i,j,k,l≥0

βijklx
iyjzkwl = 0.

Then l ⊂ Xm implies that
F (z0, z1, z2, z3) = 0.

Plug the two equations, we get an equation of βijkl, pij , αi. Since αi ∈ k, the coefficients of the equation
vanish. Therefore, we get a system of bi-homogeneous equations of βijkl and pij , which define Γm.

There are two natural projections
PN ×Π

φ
//

ψ

��

PN

Π

Since ψ is a proper morphism and Γm ⊂ PN ×Π is closed, ψ(Γm) ⊂ PN is closed. If ψ(Γm) = PN , then every
hypersurface of degree m contains at least one line. What remains is to estimate dimΓm = N + 3−m by
dimension count. For m > 3, dimΓm < N . We have obtained the following result.

Theorem 5.3. For any m > 3, there exist surfaces of degree m that do not contain any lines. Moreover,
such surfaces correspond to an open subset of PN .

Example 5.4. Fermat hypersurface Fm of degree m:

xm + ym + zm + wm = 0.

Then the line defined by x+ ξy = z + ξw = 0 is contained in Fm, where ξ is a root of Tm + 1 = 0.

It is easy to see that surface of degree m = 1 or 2 contains infinity many lines.

Theorem 5.5. Every cubic surface contains at least one line. There exists an open subset U of the space P19

parametrising all cubic surfaces such that a surface corresponding to a point of U contains only finitely many
lines.

Proof. Notice that dimΓ3 = 19. To prove the theorem, we only need to construct a cubic surface contains
only finitely many lines.

Theorem 5.6 (The Theorem on the Dimension of Fibres). Let f : X → Y be a morphism between varieties.
Suppose that f is surjective, dimX = n, dimY = m. Then m ≤ n, and
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(i) dimF ≥ n−m for any y ∈ Y and for any component F of the fibre f−1(y).

(ii) there exists a nonempty open subset U ⊆ Y such that dim f−1(y) = n−m for y ∈ U .

5.3 Twenty-seven lines on a cubic surface

Let X ⊂ P3 be a nonsingular cubic surface. Then X contains a line L by Theorem 5.5. Through L, pass
two distinct planes E1 and E2 with equations φ1 = 0 and φ2 = 0, and consider the rational map φ : X → P1

given by φ(x) = (φ1(x) : φ2(x)). The linear system λ1φ1 + λ2φ2 corresponding to this map has L as a fixed
component: if Eλ1,λ2 is the section of X by the plane with λ1φ1 + λ2φ2 = 0 then Eλ1,λ2 = L+ Fλ1,λ2 , where
Fλ1,λ2

is a plane conic. The linear system Fλ1,λ2
defines the same map φ. We can show the map φ is regular,

and thus φ : X → P1 is a conic bundle.
By genus formula, any line L on a cubic surface has L2 = −1. Indeed, (KX+L)·L = L2−degL = 2g(L)−2

and degL = 1, so L2 = −1.
If L is the line given by ξ0 = ξ1 = 0 then the equation of X can be written as

A(ξ0, ξ1)ξ
2
2 + 2B(ξ0, ξ1)ξ2ξ3 + C(ξ0, ξ1)ξ

2
3 + 2D(ξ0, ξ1)ξ2 + 2E(ξ0, ξ1)ξ3 + F (ξ0, ξ1) = 0,

where A,B,C,D,E and F are forms if ξ0, ξ1 of degree degA = degB = degC = 1, degD = degE = 2 and
degF = 3.

The degenerate fibres of φ : X → P1 correspond to zeros of the discriminant, each zero has multiplicity 1,
and each degenerate fibre is a pair of distinct lines. Then the number of degenerate fibres equals the degree
of the discriminant

∆ = det

∣∣∣∣∣∣∣∣
A C D

C B E

D E F

∣∣∣∣∣∣∣∣
which is 5.

Proposition 5.7. Every line L on a nonsingular projective cubic surface X meets exactly 10 other lines on
X, which break up into 5 pairs of intersecting lines.

Consider any line L′ intersecting L. Similarly, we can consider the projection away from the line L′.
Then L′ meets 10 lines, of which only L and one further line meet L. Therefore, there exists a line M not
intersecting L.

As a conic bundle φ : X → P1, the group Cl(X) is generated by L1, L2, L3, L4, L5, F, S, where S is some
section of φ. Actually, we can replace S by M , and obtain the following result.

Proposition 5.8. Cl(X) is a free group with 7 generators, the classes of the line L1, L2, L3, L4, L5,M and
F .

The intersection numbers of L1, L2, L3, L4, L5,M and F are tabulated as follows. We now show how to
use Cl(X) to find all the lines on X. A line C on X satisfies C2 = −1. We know L and a further 10 lines
intersecting it. We now try to find the lines disjoint from L. These satisfy CL = 0, and therefore CF = 1.

Suppose C ∼
∑5
i=1 xiLi + yM + zF . Then CF = 1 implies y = 1; C2 = −1, CL = 0 give

−
5∑
i=1

x2i + 2z = 0,

5∑
i=1

xi + 2z = 0.
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L1 L2 L3 L4 L5 M F

L1 -1 0 0 0 0 0 0
L2 0 -1 0 0 0 0 0
L3 0 0 -1 0 0 0 0
L4 0 0 0 -1 0 0 0
L5 0 0 0 0 -1 0 0
M 0 0 0 0 0 -1 1
F 0 0 0 0 0 1 0

It follows that
∑5
i=1(x

2
i + xi) = 0, that is, each xi = 0 or −1. Moreover, the equation above implies that the

numbers of i for which xi = −1 is even, so that either

(a) all xi = 0;

(b) all xi = −1 except one;

(c) xi = xj = −1, and the remaining xk = 0.

Of these possibilities, (a) gives the class of line M , (b) and (c) 5 and 10 classes. That is, 16 classes
altogether. Each class contains at most one line: for if C and C ′ are distinct lines then C ·C ′ = 0 or 1, whereas
C ·C ′ = C2 = −1 if C ∼ C ′. Thus, it remains to exhibit at least one line in each class. In case (a), this is M .
In case (b), we can show there are L′′

i in the figure. In case (c), we get a class Dij = −Li − Lj +M + F . We
can argue by intersection numbers that Dij are different lines from those in the figure.

Hence, there are 17 (in the figure) +10 lines, which are 27 lines on X.

Theorem 5.9. A nonsingular cubic surface of P3 has exactly 27 lines.

5.4 A cubic surface is isomorphic to P2 blowup 6 points

A nonsingular cubic surface X is a blow up of Q ≃ P 1 × P1 for 5 points. Indeed, for the disjoint two lines L
and M , we can construct a morphism

φ = φL × φM : X → P1

where φL (resp. φM ) is the conic bundle obtained as the linear projection away from L (resp. M). It is clear
that only 5 lines L′

1, . . . , L
′
5 are contracted by φ. So X is P1 × P1 blown up in five distinct points.

To show a nonsingular cubic surface is isomorphic to P2 blowup 6 points, we need some preliminaries for
linear systems. Let Y be a smooth projective surface, |D| a complete linear system of curves on Y , P1, . . . , Pr

points of Y . Then we will consider the sub-linear system d consisting of divisors D′ ∈ |D| which pass through
the points P1, . . . , Pr, and we denote it by |D − P1 − · · · − Pr|. We say that P1, . . . , Pr are the assigned base
points of d.

Let π : Y ′ → Y be the morphism obtained by blowing up P1, . . . , Pr, and let E1, . . . , Er be the exceptional
curves. Then there is a natural one-to-one correspondence between the elements of d on Y and the elements
of the complete linear system d′ = |π∗D − E1 − · · · − Er| on Y ′ given by D 7→ π∗D − E1 − · · · − Er. The
new linear system d′ on Y ′ may or may not have base points. We call any base point of d′, considered as an
infinitely near point of Y , an unassigned base point of d.
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Theorem 5.10. Let d be the linear system of plane cubic curves with assigned base points P1, . . . , Pr. Assume
that P1, . . . , Pr are in general position, that is, no 3 of the Pi are collinear, and no 6 of them lie on a conic.
If r ≤ 6, then the corresponding linear system d′ on the surface Y ′ obtained from P2 by blowing up P1, . . . , Pr

is very ample.

Corollary 5.11. With the same hypotheses, for each r = 0, 1, . . . , 6, we obtain an embedding of X ′ in P9−r

as a surface of degree 9 − r, whose canonical sheaf ωY ′ ≃ OY ′(−1). In particular, for r = 6, we obtain a
nonsingular cubic surface in P3.

The above corollary shows that we can obtain a cubic surface by blowing up 6 assigned base points of
the linear system |OP2(3)| from P2. On the other hand, for a cubic surface X, we choose any subset of
six mutually skew lines E′

1, . . . , E
′
6 from 27 lines on X. We can blow down these 6 lines and get a smooth

projective surface Z, as (E′
i)

2 = −1 and Castelnuovo’s contraction theorem. Since X is rational and has
Picard number 7, Z is a smooth rational surface with Picard number 1. So Z ≃ P2. It shows that any cubic
surface is isomorphic to P2 blow up 6 points.

5.5 Effective Cone of curves for quadric and cubic surfaces

The effective cone of curves NE(Q) for a smooth quadric surface Q is spanned by two lines E and F . That is,
NE(Q) = {a[E] + b[F ] | a, b ∈ R≥0}.

Proposition 5.12. Let X be a smooth cubic surface. Then the effective cone of curves is

NE(X) = NE(X) =

{
27∑
i=1

ai[li] | ai ∈ R≥0

}
the closed rational polyhedron spanned by the 27 lines l1, . . . , l27 ⊂ X.

Indeed, for a Fano variety Y , the effective cone of curves NE(Y ) is a rational polyhedron cone by the
Cone Theorem.

5.6 Rationality for quadric and cubic surfaces

Quadric and cubic surfaces are both del Pezzo surfaces, and rational surfaces. Indeed, they are Fano surfaces
follows from adjuction formula, showing their anti-canonical divisors are ample. A smooth quadric Q is
isomorphic to P1×P1, and thus is birational to its open subset A1×A1. It shows that Q is a rational surface.
For a nonsingular cubic X, the existence of 27 lines, there are two disjoint lines L and M . By Bézout’s
theorem, a line passing through a point x ∈ L and a point y ∈ M will intersect X in degX = 3 points or
the line is contained in X. Hence, it defines a birational map P1 × P1 99K X, showing that X is a rational
surface. Another way to see this is that X is a blow up of rational surfaces Q or P2. Thus, X is rational.

A more general result is that all del Pezzo surfaces are rational. Indeed, it can be shown from Kodaira
vanishing and Castelnuovo’s rationality criterion.

Theorem 5.13 (Castelnuovo’s rationality criterion). A smooth projective surface S is rational if and only if

H1(S,OS) = H0(S,OS(2KS) = 0.

Theorem 5.14 (Kodaira vanishing theorem). Let X be a smooth projective variety over C, and if L is an
ample divisor on X, then Hi(X,KX + L) = 0 for all i > 0.
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6 Pairs and Singularities 1

One of the successful idea of birational geometry has been to study pairs (X,B) rather than only varieties.
Tracing singularities rather than avoiding then has been another key for success.

Why pairs?

Adjunction: Let X be a smooth variety, S ⊆ X a smooth divisor. Then KS ∼ (KX + S)|S . To lift
information from S to X, it is natural to study (X,S).

Canonical bundle formula: Let f : X → Z be a Calabi-Yau fibre space, e.g., elliptic surface. One can
write KX ≡ f∗(KZ +BZ) for some BZ ≥ 0. To lift information from Z to X, it is natural to study (Z,BZ).

Quotient varieties: Let X be a variety, G a finite group acting on X. Let Y = X/G and π : X → Y

the quotient map. We can write KX = π∗(KY +BY ) for some BY ≥ 0. So again natural to study (Y,BY ).

Why singularities?

We can do birational geometry in dimension two, mostly avoiding singularities, e.g., running MMP on a
smooth surface preserves smoothness.

MMP: But in higher dimension, running MMP often involves singular varieties. It is best to treat the
singularities.

Singularities are important: Many problems are reduced to understanding singularities, e.g., termina-
tion of MMP.

Singularities are interesting: Often behaviour singularities is very interesting and involves deep result
and conjectures, e.g., Kawamata log terminal singularities are in some sense local analogous of Fano varieties.

6.1 Pairs

Definition 6.1. A pair (X,B) consists of a normal variety X and B =
∑
biBi a divisor, bi ∈ [0, 1], such

that KX +B is Q-Cartier, i.e., m(KX +B) is Cartier for some m ∈ N.

6.2 Log resolution

Resolution of singularities of (X,B) is a projective birational morphism ϕ : W → X such that W is smooth,
ϕ−1 SuppB ∪ Exc(ϕ) is a simple normal crossing divisor. Note that Exc(ϕ) = ∪C, where C ⊆W are curves
contracted by ϕ. Log resolutions always exist by Hironaka (recall char k = 0)

6.3 Singularities

Let (X,B) be a pair, ϕ : W → X a log resolution. We can write KW + BW = ϕ∗(KX + B). We say that
(X,B) is

1. terminal if each coefficient of BW is ≤ 0 (< 0 for exceptional components);

2. canonical if each coefficient of BW is ≤ 0;

3. Kawamata log terminal of each coefficient of BW is < 1;

4. log canonical if each coefficient of BW is ≤ 1;

5. ϵ-log canonical if each coefficient of BW is ≤ 1− ϵ.
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For a prime divisor D on W , define a(D,X,B) := 1− coeffBW
D, which is the log discrepancy of D with

respect to X.

Lemma 6.2. The definition of singularities is independent of the choice of log resolution ϕ : W → X.

Proof. We check this for log canonical singularities. Others are similar. Assume that (X,B) is log canonical
with respect to ϕ : W → X. Pick another log resolution ϕ′ : W ′ → X. There is a sequence π : Y → W ′ of
smooth blowups such that π is a morphism.

Y

π′

}}

π

  

W ′

ϕ′
!!

W

ϕ
~~

X

Writing KW + BW = ϕ∗(KX + B) and KW ′ + BW ′ = ϕ′∗(KX + B). We have π∗(KW + BW ) =

π′∗(KW ′ + BW ′). So, it is enough to check the case when W ′ = Y (π′ is an isomorphism). Also, it is
enough to check the case when W ′ →W is one blowup, say blowup of a smooth Z ⊆W of codimension c.
Then one can calculate KW ′ + (1− c)E = π∗KW and B̃W + (µZBW )E = π∗BW . This gives KW ′ +BW ′ =

KW ′ + B̃W + (1− c+ µZBW )E = π∗(KW +BW ).

As (X,B) is log canonical for ϕ : W → X, each coefficient of BW is at most 1. So, µZB ≤ c and hence
the coefficient of E in BW ′ is ≤ 1. Thus, (X,B) is log canonical with respect to ϕ′ : W ′ → X.

6.4 Examples

(1) Let (X,B) be a log smooth pair: X is smooth, SuppB is simple normal crossing. Then (X,B) is

1. terminal if each coefficient of B is 0;

2. canonical if each coefficient of B is 0;

3. Kawamata log terminal if and only if each coefficient of B is < 1;

4. log canonical if and only if each coefficient of B is ≤ 1;

5. ϵ-log canonical if each coefficient of B is ≤ 1− ϵ.

(2) Let (X,B) be a pair of dimension one. Then (X,B) is log smooth, so we can apply (1).

(3) LetX = P2, B be a nodal cubic curve. Then (X,B) is log canonical. The blowup ofX at the node x ∈ B
is a log resolution: ϕ : W → X. Note that µxB = 2, so one can see KW +BW = ϕ∗(KX +B) = KW + B̃+E,
where E is the exceptional divisor of ϕ. So, (X,B) is log canonical, not Kawamata log terminal.

On the other hand, the pair (X,B′) where B′ is a curve with one cuspidal singularity is not log canonical.

(4) Let X = P2 and B = 2
3B1 +

2
3B2 +

2
3B3, where Bi are lines through a point x. Again the blow up at

x is a log resolution. One can see KW +BW = ϕ∗(KX +B) with BW = B̃ + E, where E is the exceptional
divisor of ϕ. So, (X,B) is log canonical but not Kawamata log terminal.

If C = 1
3B1 +

1
3B2 +

1
3B3, then (X,C) is Kawamata log terminal.
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(5) Let X ⊆ A3 be defined by x2 + y2 + z2 = 0. In Section 4.3 we saw that blowing up (0, 0, 0) gives a
resolution of singularities ϕ : W → X with one exceptional divisor E with E2 = −2. Write KW +BW = ϕ∗KX

with BW + bE. Then (KW + bE) ·E = 0. By adjunction formula, (KW +E) ·E = −2 = degKE since E ≃ P1.
So, KW · E = 0 as E2 = −2.

Thus, b = 0 which means (X, 0) is canonical but not terminal.
(6) Assume X is a surface with a resolution ϕ : W → X with one exceptional divisor E with E2 = −n

(n ∈ N). Equivalently, the normal bundle to E in Y has degree −a. Such surfaces exist for every n. Write
KW +BW = ϕ∗KX . Similar to (5), we can calculate BW = (1− 2

n )E. So, (X, 0) is Kawamata log terminal.
Actually it is 2

n -log canonical. The larger n, the more singular.
(7) Let X ⊆ A4 be defined by xy − zu = 0. This is the cone over the quadric surface in P3 defined by the

same equation. Blowing up (0, 0, 0, 0) gives a resolution ϕ : W → X with one exceptional divisor E (E ⊆ P3

is the quadric surface). One has E ≃ P1 × P1 which comes with two projections.

E
f1

~~

f2

  

P1 P1

E ⊆W �
�

//

��

V ⊇ P3

blow up
��

X
� � // A4 ∋ (0, 0, 0, 0).

Taking a fibre L of f1 (or of f2) we can calculate KW · L = −1, E · L = −1. So writing KW +BW we get
BW = −E. Thus, (X, 0) has terminal singularities.

E = P1 × P1 ⊆W

ww ''

��

Y

''

// Y ′

ww
X

There are two possible contraction of E. One has both Y and Y ′ are smooth. Also, Y → X and Y ′ → X

each contracts one P1. The birational map Y 99K Y ′ is a flop.

6.5 Minimal resolution for surfaces

Let X be a surface, ϕ : W → X a resolution. Run an MMP on W over X: contract −1-curves on W which
are contracted to points in X. Let Y be the outcome. Then ψ : Y → X is a resolution which is minimal,
i.e., it does not factor through any other resolution. Here KY is nef over X (KY · C ≥ 0 for C ⊆ Y which is
contracted to a point on X). Now assume KX is Q-Cartier and write KY +BY = ϕ∗KX .

Lemma 6.3. One has BY ≥ 0.

Proof. This follows from the negativity lemma.

Corollary 6.4. (X, 0) is terminal if and only if X is smooth.

Proof. (⇐= ) Clear from definition.
( =⇒ ) On the minimal resolution ψ : Y → X, BY ≥ 0. But (X, 0) is terminal implies each component of

BY has negative coefficient. This is possible only if ψ is an isomorphism.
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Lemma 6.5. Let (X, 0) be a Kawamata log terminal pair. Then each exceptional curve of Y → X (and of
W → X) is isomorphic to P1.

Proof. Let E be an exceptional curve of Y → X, and b be the coefficient of E in BY . Since (X, 0) is
Kawamata log terminal, b < 1. Since E is exceptional over X, E2 < 0. This can be seen by taking a Cartier
divisor D ≥ 0 on X containing ψ(E) and considering (ψ∗D) · E = 0. Note that (KY + BY ) · E = 0 and
BY ≥ 0. Then (KY + bE) · E ≤ 0. So, degKE = (KY + E) · E ≤ (1− b)E2 < 0 by adjunction. Note that
here we do not need to know that E is smooth, which still works. This is possible only if E ≃ P1.

Since W → Y is a sequence of smooth blowups, each exceptional curve on W is isomorphic to P1.

Lemma 6.6 (Negativity lemma). Let ψ : Y → X be a projective birational morphism of normal varieties.
Let D be a Q-Cartier divisor on Y such that

• −D is nef over X;

• ψ∗D ≥ 0.

Then D ≥ 0.

Proof. First, by localising the problem on X and taking hyperplane sections on Y we can assume that X,Y
are surfaces and that f is not an isomorphism. Now after replacing Y with a resolution we can find an
effective exceptional divisor E which is anti-nef over X whose support contains Exc(f). To find such E we
could take a nonzero effective Cartier divisor H on X whose support contains the image of Exc(f). Then,
f∗H = H̃ +E where H̃ is the birational transform of H and E an exceptional effective divisor. Obviously, H̃
is nef over X hence E is anti-nef over Y .

Let e be the minimal non-negative number for which D + eE ≥ 0. If D is not effective, then D + eE

has coefficient zero at some exceptional curve C. On the other hand, locally over X, E is connected. So, if
D+eE ̸= 0, we can choose C so that it intersects some component of D+eE. But in that case (D+eE)·C > 0

which contradicts the assumptions. Therefore, D + eE = 0 which is not possible otherwise D and E would
be both numerically trivial over X.
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7 Pairs and singularities 2

We continue our study of pairs and singularities. First, let us treat the negativity lemma.

Lemma 7.1 (Negativity lemma). Let ψ : Y → X be a projective birational morphism of normal varieties.
Let D be a Q-Cartier divisor on Y such that

• −D is nef over X;

• ψ∗D ≥ 0.

Then D ≥ 0.

Proof. Taking a general very ample divisor H ⊆ X, letting G = ψ∗H, and considering G→ H and D|G, we
can reduce the problem to the case dimY = dimX = 2. Taking a resolution, can assume Y smooth. Take a
Cartier divisor R ≥ 0 on X containing the image of the exceptional curves. Write ψ∗R = R̃+F where F ≥ 0

and SuppF = ∪exceptional curves. Then R̃ is nef over X, so −F is nef over X.

Let e be minimal such that D + eF ≥ 0. If D is not effective, e > 0 and there exists a component E
of F such that E is not a component of D + eF but E intersects some component of D + eF . But then
(D + eF ) · E > 0 contradicting D · E ≤ 0 and F · E ≤ 0. So D ≥ 0.

Definition 7.2 (Q-factorial singularities). Let X be a normal variety. A divisor D on X is Q-Cartier if
mD is Cartier for some m ∈ N. We say that X is Q-factorial if every divisor is Q-Cartier. We will see that
running MMP preserves Q-factoriality.

Example 7.3. (1) smooth varieties are Q-factorial.

(2) Let X be a surface with Kawamata log terminal singularities. Then X is Q-factorial.

Indeed, assume ϕ : W → X is a resolution, and B = sum of exceptional curves. Then (W,B) is log
canonical and W is Q-factorial. We will see that we can run an MMP on (W,B) which ends with X, so X is
Q-factorial.

(3) Let X be a surface with log canonical singularities. Then X may not be Q-factorial.

Let E be an elliptic curve ⊆ P2 with cubic equation F . Let X0 be the cone over E, which is a variety in
A3 defined by F . Define X ⊆ P3 to be the closure of X0, which is the projective cone over E. Then X is
singular at (0 : 0 : 0 : 1).

Blowing up (0 : 0 : 0 : 1) induces a resolution ϕ : W → X with one exceptional curve C ≃ E. Fact: there
is a P1-bundle f : W → E.

C �
�

//

isomorphism
��

W

f
~~

ϕ

  

E X

Now pick a divisor L such that L ≡ 0 but mL ̸∼ 0, ∀m ∈ N. Let D = ϕ∗f
∗L. Then D is not Q-Cartier: if

mD is Cartier, then ϕ∗mD = mf∗L (by the Lemma 7.1) and mf∗L|C ∼ 0, so mL ∼ 0, a contradiction. So
X is not Q-factorial.

(4) In higher dimension even terminal singularity ̸ =⇒ Q-factorial.
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Let X ⊆ A4 be defined by xy − zu = 0. Recall that X is the cone over a quadric curve. See the diagram
below, where ϕ is a resolution with one exceptional divisor ≃ P1 × P1.

W

~~ !!

ϕ

��

Y

f
  

Y +

f+

}}

X

P1 × P1

{{ ##

��

P1

##

P1

{{
pt

Pick a prime divisor H on Y interesting the exceptional curve of Y → X but not containing it. Let D = f∗H.
Then D is not Q-Cartier: if mD is Cartier, then (f∗mD) · C = 0, but f∗mD = mH as f does not contract
any divisor, while mH · C > 0, a contradiction. So X is not Q-factorial.

7.1 Quotient varieties

Let X be a normal variety. Let Aut(X) = {g : X → X | g isomorphism} be the automorphism group of X,
where the group law is given by composition. Assume that G ⊆ Aut(X) is finite. Then G acts on X.

Fact: the quotient Y := X/G is a normal variety, and the quotient map π : X → Y is a finite morphism.
By the Hurwitz-Riemann formula KX = π∗KY +R, R ≥ 0. Now since π is finite, π∗KY can be defined

even if KY is not Q-Cartier (Y is smooth in codimension one). Here R =
∑
D prime divisor on X(rD − 1)D,

rD is the ramification index at D. One can show that R is G-invariant, so there is BY such that KX =

π∗KY +R = π∗(KY +BY ).

Exercise 7.4. If X has Kawamata log terminal singularities, e.g., X smooth, then (Y,BY ) has Kawamata
log terminal singularities.

Example 7.5. Let X = A2, and σ : X → X, (a, b) 7→ (−a,−b). Let G = ⟨σ⟩ ⊆ Aut(X). Then |G| = 2 as
σ2 = id. Let Y = X/G.

If X = Spec k[α, β], then Y = Spec k[α, β]G where k[α, β]G = {f ∈ k[α, β] | f G-invariant}. Note that
G acts on k[α, β], α 7→ −α, β 7→ −β. We can calculate k[α, β]G = k[α2, αβ, β2]. So Y = Spec k[α2, αβ, β2].
Define ϕ : k[s, t, u] → k[α2, αβ, β2], s 7→ α2, t 7→ αβ, u 7→ β2. Then Kerϕ = ⟨su − t2⟩. So k[α2, αβ, β2] ≃
k[s, t, u]/⟨su− t2⟩. Then Y is isomorphic to the variety ⊆ A3 defined by su− t2. So Y is isomorphic to the
cone over a conic ⊆ P2 defined by su− t2.

Exercise 7.6. Calculate BY so that KX = π∗(KY +BY ), π : X → Y the quotient map.

Remark 7.7. Using quotients we can construct many example of singularities. If X is smooth, singularities
on Y = X/G are called quotient singularities. In this case Y is Q-factorial.

We can then see that the singularity of V ⊆ A4 defined by xy − zu = 0 is not a quotient singularity
because we saw that V is not Q-factorial.

7.2 Vanishing theorems

Theorem 7.8 (Kodaira vanishing). Let X be a smooth projective variety, A an ample divisor. Then
hi(X,KX +A) = 0, ∀i > 0.
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Theorem 7.9 (Kawamata-Viehweg vanishing). Let (X,B) be a pair with Kawamata log terminal singularities,
f : X → Z a projective morphism. Let L be a Q-Cartier divisor on X, L− (KX +B) is ample (or just nef
and big) over Z. Then Rif∗OX(L) = 0, ∀i > 0.

In particular, if Z is affine, e.g., Z = pt, then hi(X,L) = 0, ∀i > 0.

This is one of the most important tools in birational geometry.

7.3 Applying Kawamata-Viehweg vanishing

In birational geometry proofs are often by induction. Here is a rough idea how to apply Theorem 11.4.
Let (X,B) be a projective pair with Kawamata log terminal singularities. Let A be an ample divisor. Set
t = inf{a | K + B + aA is ample}. Then KX + B + tA is nef. Assume that KX + B is not nef, so t > 0.
Assume t ∈ Q (we will see later that this is the case). We will prove that m(KX +B + tA) is base point free
for some m ∈ Z>0.

A first step is to show h0(X,m(KX +B + tA)) ̸= 0 for some m ∈ Z>0. The idea is to find ∆, S, L such
that

1. (X,∆) is Kawamata log terminal,

2. L is Cartier,

3. L− (KX +∆)− S is ample,

4. h0(X,L) ̸= 0 =⇒ h0(X,m(KX +B + tA)) for some m ∈ Z>0.

Consider the exact sequence

0 −→ OX(L− S) −→ OX(L) −→ OS(L|S) −→ 0

and the long exact sequence

H0(X,L) −→ H0(S,L|S) −→ H1(X,L− S) −→ 0.

By Theorem 11.4, H1(X,L− S) = 0 as L− S = KX +B + ample. So H0(S,L|S) ̸= 0 =⇒ H0(X,L) ̸= 0.
Now if S is normal and (X,∆+S) is log canonical, then KS +∆S := (KX +∆+S)|S by a general adjunction
formula. So L|S = KS +∆S + ample. Using induction one makes sure that H0(S,L|S) ̸= 0 and finally derives
h0(X,m(KX +B + tA)) ̸= 0 and eventually that m(KX +B + tA) is base point free.

Why wwant m(KX +B + tA) base point free? Because it defines a morphism X → Z which gives the
first step of an MMP on (X,B).
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8 Cones of curves and extremal rays

To run MMP on surfaces, need to contract (−1)-curves. It took decade to generalise this to higher dimension.
What is the analogue of a (−1)-curve in dimension ≥ 3? Mori answered this introducing extremal rays.

Definition 8.1 (R-1-cycles and R-Cartier divisors). Let X be a projective variety. Let Z1(X) = group of
1-cycles = {

∑
niCi | ni ∈ Z, Ci ⊆ X curve}. Define Z1(X)⊗Z R = group of R-1-cycles, which is an R-vector

space. Denote Pic(X) = group of Cartier divisors modulo linear equivalence. Let Pic(X)⊗Z R = group of
R-Cartier divisors.

For each D ∈ Pic(X) ⊗ R and C ∈ Z1(X) ⊗ R, one can define an intersection number D · C. For
D,D′ ∈ Pic(X)⊗ R, D ≡ D′ means

D · C = D′ · C, ∀C ∈ Z1(X)⊗ R.

Similarly, for C,C ′ ∈ Z1(X)⊗ R, C ≡ C ′ means

D · C = D · C ′ ∀D ∈ Pic(X)⊗ R.

Define

N1(X) = Z1(X)⊗ R/ ≡

that is, R-1-cycles modulo numerical equivalence, and

N1(X) = Pic(X)⊗ R/ ≡

that is, R-Cartier divisors modulo numerical equivalence. Then there is an intersection paring

N1(X)×N1(X) −→ R

(D,C) 7−→ D · C

This induces injective R-linear maps

N1(X) ↪→ N1(X)∗ = dual vector space of N1(X),

N1(X) ↪→ N1(X)∗ = dual vector space of N1(X).

Theorem 8.2 (Theorem of the Base, Néron-Severi). dimRN
1(X) <∞.

Therefore, N1(X) ≃ N1(X)∗, N1(X) ≃ N1(X)∗. The number ρ(X) := dimRN
1(X) = dimRN1(X) is the

Picard number of X.

Definition 8.3 (Cone of curves and extremal rays). Let X be a projective variety. Let NE(X) = classes in
N1(X) given by R-1-cycles C ≥ 0. The Mori-Kleiman cone of X is

NE(X) = closure of NE(X) in N1(X).

This is a convex cone, i.e.,

• α ∈ NE(X), a ∈ R≥0 =⇒ aα ∈ NE(X).
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• α, β ∈ NE(X) =⇒ α+ β ∈ NE(X).

An extremal face of NE(X) is a convex subcone F such that α + β ∈ F =⇒ α, β ∈ F for any
α, β ∈ NE(X).

Theorem 8.4 (Kleiman’s Ampleness Criterion). Let D be a Q-Cartier on a projective variety X. Then D is
ample if and only if D · α > 0 for any 0 ̸= α ∈ NE(X).

Example 8.5. (1) Let X be a projective curve. Then N1(X) ≃ R, N1(X) ≃ R and ρ(X) = 1.
(2) Let X = Pn. Then N1(X) ≃ R, N1(X) ≃ R and ρ(X) = 1.
(3) Let X be a projective variety, D a nef divisor. Then

FD = {α ∈ NE(X) | D · α = 0}

is nextremal face of NE(X).
Let f : X → Z be a morphism, and A an ample divisor on Z. Then Ff∗A is an extremal face of NE(X).

A curve C ⊆ X is contracted by f if and only if the class of C ∈ Ff∗A. Hence, Ff∗A uniquely determines f
(up to Stein factorization).

Question 8.6. Which faces of NE(X) correspond to morphisms X → Z.

We will see that not every face corresponds to some X → Z. But if X has good singularities, e.g.,
Kawamata log terminal, then any face F on which KX is negative corresponds to some X → Z.

(4) Let ϕ : X → Pn be the blowup of a smooth point p0, and E be the exceptional divisor. Pick a Cartier
divisor D on X. Then ϕ∗D ∼ mH for some m ∈ Z, where H is a hyperplane. Also, D = ϕ∗ϕ∗D + eE for
some e ∈ Z. So D ∼ ϕ∗mH + eE. This shows ϕ∗H,E generate N1(X). So N1(X) ≃ R2 and N1(X) ≃ R2.
Now let C ⊆ X be a curve contracted by ϕ. Then (ϕ∗H) · C = 0, so the class of C in NE(X) belongs to the
extremal face where ϕ∗H vanishes. Another extremal ray is generated by L, the birational transform of a
line through p0.

X
ϕ

~~

P1-bundle
f ""

Pn Pn−1

The extremal ray given by C corresponds to ϕ; The extremal ray given by L corresponds to f .
(5) Let Y be a smooth projective variety, and E a coherent locally free sheaf on Y . Let f : X = P(E)→ Y

be the projective bundle of cE. Then Pic(X) ≃ Pic(Y )⊕ Z. So ρ(X) = ρ(Y ) + 1.
Taking an ample divisor A on Y ,the face Ff∗A ⊆ NE(X) is an extremal ray of NE(X), generated by

curves in the fibres of f .
Now assume Y is a curve. Then ρ(X) = 2 and NE(X) has two rays. There are examples where the rays

cannot be contracted, i.e., does not correspond to any morphism X → Z.
If E = OY ⊕OY (A) for some very ample divisor A on Y , then the other ray can be contracted.

X

~~

f

  

Y Z cone over Y.

Theorem 8.7. Let X be a normal projective surface, C ⊆ X a curve that is Q-Cartier. Then,
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• C2 < 0 =⇒ C generates an extremal ray of NE(X);

• C2 > 0 =⇒ C does not belong to any extremal ray, unless ρ(X) = 1.

Proof. Assume C2 < 0. Let C = {α ∈ NE(X) | C ·α ≥ 0}. Then C is a convex cone, and NE(X) is the convex
hull of C and [C] (the class of C). Let H = {α ∈ NE(X) | C · α = 0}, which is the restriction of a hyperplane.
Since C2 < 0, [C] and C are on different sides of H. Then [C] should be on some extremal ray.

Now assume C2 > 0. Pick I ∈ Z>0 such that IC is Cartier. Take a resolution of singularities ϕ : W → X.
Then letting D = ϕ∗IC, we have D2 = (IC)2 > 0. By the Riemann-Roch theorem,

χ(mD) = h0(W,mD)− h1(W,mD) + h2(W,mD)

=
1

2
(mD) · (mD −KW ) + constant.

By Serre duality,
h2(W,mD) = h0(W, ,KW −mD) = 0 ∀m≫ 0.

So h0(W,mD) grows like m2. So h0(X,mIC) = h0(W, ,mD) grows like m2. Now let A be any curve on X.
Consider

0 −→ OX(mIC −A) −→ OX(mIC) −→ OA(mIC|A) −→ 0

which gives an exact sequence

0 −→ H0(X,mIC −A) −→ H0(X,mIC) −→ H0(A,mIC|A) −→ . . .

Since A is a curve, h0(A,mIC|A) grows at most like m. So h0(X,mIC − A) ̸= 0 for m ≫ 0. This means
there exists some D ≥ 0 such that

mIC −A ∼ D for some m≫ 0.

Now if ρ(X) ̸= 1 and if [C] generates an extremal ray, then [A] belongs to this ray. This is possible only if
ρ(X) = 1.

Example 8.8. (1) Let X be a smooth quadric surface. Recall that X ≃ P1×P1. Considering the projections
f1, f2 : X → P1, we see ρ(X) = 2 and NE(X) has two extremal rays generated by the fibres C1, C2 of the two
projections f1, f2.

(2) Let X ⊆ P3 be a smooth cubic surface. Then KX = (KP3 +X)|X ∼ −H|X , where H is a hyperplane.
Recall that X contains 27 lines. If L ⊆ X is any line, then KX · L = −H · L = −1. So from

−2 = degKL = (KX + L) · L = −1 + L2

we see that L2 = −1. So L is a (−1)-curve and it can be contracted. Then [L] ∈ NE(X) generates an
extremal ray.

It is well-known that contracting 6 of the lines carefully we reach P2. In particular, ρ(X) = 7. Now
−KX is ample, so by Theorem 8.4, KX is negative on every extremal ray. Moreover, we will see that every
extremal ray corresponds to some morphism X → Z. Working a bit one can see that the extremal rays of X
are exactly those generated by the lines.
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9 Linear systems and Kodaira dimension

Definition 9.1 (Divisorial sheaves). Let X be a normal variety. We can interpret sections of divisors on X
as rational functions. If D is a Weil divisor on X, then we can describe OX(D) in a canonical way as

OX(D)(U) = {f ∈ K(X)∗ | (f) +D|U ≥ 0} ∪ {0}

where U is an open subset of X and K(X) is the function field of X. If D′ ∼ D, then of course OX(D′) ≃
OX(D) but these sheaves are not canonically identical, i.e., they have different embedding in the constant
sheaf associated to K(X).

If D is Cartier, then OX(D) is isomorphic to the sheaf defined in Hartshorne.
If W is any open subset of X such that codimX \W ≥ 2, then OX(D) = j∗OW (D|W ), where j : W ↪→ X

is the inclusion, because
(f) +D ≥ 0 ⇐⇒ (f) +D|W ≥ 0.

In particular, by taking W = X \Xsing one can easily see that the above sheaves are reflexive.

Definition 9.2 (Base locus, maps of divisor). Let X be a normal variety, and D a divisor. The linear system
of D is

|D| = {D′ ≥ 0 | D ∼ D′} = {Div(f) +D | F ∈ H0(X,OX(D))}.

The base locus is
Bs |D| =

⋂
D′∈|D|

SuppD′

If H0(X,D) := H0(X,OX(D)) = 0, we let Bs |D| = X. The fixed part of |D| is the largest divisor F ≥ 0

such that F ≤ D′, ∀D′ ∈ |D|. The movable part of |D| is D − F .
When 0 < dimkH

0(X,D) < ∞, e.g., X is projective, choosing a basis f1, . . . , fn of H0(X,D), we can
define a rational map

ϕD : X 99K Pn−1, x 7→ (f1(x) : · · · : fn(x)).

Note that ϕD is defined on X \ Bs |D|. When Bs |D| = ∅, D is base point free and ϕD is a morphism.

Definition 9.3 (Contraction). Let f : X → Z be a projective morphism of varieties (or schemes). This f is
a contraction if f∗OX = OZ . This implies the fibres of f are connected.

Theorem 9.4 (Stein factorisation). Let g : X → V be a projective is a projective morphism of varieties.
Then g factors as

X
f
//

g

77Z
h // V

where f is a contraction and h is finite.

Definition 9.5 (Kodaira dimension). For a divisor D on a normal projective variety X, define the Kodaira
dimension of D as the largest number

κ(D) ∈ {−∞} ∪ Z

satisfying

0 < lim sup
m→+∞

h0(X,mD)

mκ(D)
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This says the function h0(X,mD) of m “grows like mκ(D) ”.
If D is a Q-divisor, we define

κ(D) := κ(ℓD)

for some ℓ ∈ Z>0 such that ℓD is integral. By the next lemma, this is well-defined.

Lemma 9.6. Let X be a normal variety, and D,D′ divisors.

(1) κ(D) = κ(nD) for any n ∈ N.

(2) If nD ∼ nD′ for some n ∈ N, then κ(D) = κ(D′).

Proof. (1) From the definition, it is clear that κ(D) ≥ κ(nD). If h0(X,mD) = 0 for some m > 0, then

h0(X,mnD) ≥ h0(X,mD).

If h0(X,mD) ̸= 0 for some m > 0, then mD ∼ G for some G ≥ 0. We still have

h0(X,mnD) = h0(X,nG) ≥ h0(X,G) = h0(X,mD).

So, if h0(X,mD) “grows like mκ(D) ”, then so does h0(X,mnD). Hence κ(D) = κ(nD).
(2) nD ∼ nD′ =⇒ κ(nD) = κ(nD′) =⇒ κ(D) = κ(D′) by (1).

Lemma 9.7. Let X be a normal projective variety, and D a divisor. Then

κ(D) ∈ {∞, 0, 1, . . . ,dimX}.

If D is ample, then κ(D) = dimX.

Proof. By definition,
κ(D) ∈ {∞, 0, 1, . . . }.

So it is enough to show that κ(D) ≤ dimX. Taking a resolution, we may assume that X is smooth. (Assume
D is Q-Cartier?)

First assume D is very ample. Changing D linear, we may assume D is smooth (Bertini theorem). Now
consider the exact sequence

0 −→ OX((m− 1)D) −→ OX(mD) −→ OD(mD|D) −→ 0

which gives the exact sequence

0 −→ H0(X, (m− 1)D) −→ H0(X,mD) −→ H0(D,mD|D) −→ . . .

By induction, κ(D|D) = dimD = dimX − 1, so h0(D,mD|D) “grows like mdimX−1 ”. Thus h0(X,mD)

“grows like mdimX .
(Note that when D is very ample,

χ(X,mD) = h0(X,mD), ∀m≫ 0,

so h0(X,mD) is just the Hilbert polynomial of X for large m.)
Now assume D is arbitrary. Assume A is an ample divisor. Then h0(X,nA − D) ̸= 0 for n ≫ 0. So

nA ∼ D +G for some G ≥ 0. Then κ(D) ≤ κ(nA) = κ(A) = dimX.
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Example 9.8 (Curves). Let X be a smooth projective curve and D a Q-divisor on X.

• degD < 0 =⇒ h0(X,mD) = 0, ∀m ∈ Z>0 =⇒ κ(D) = −∞.

• degD > 0 ⇐⇒ D ample ⇐⇒ κ(D) = 1.

• degD = 0 =⇒

– κ(D) = 0 ⇐⇒ D is torsion, i.e., mD ∼ 0 for some m ∈ Z>0.

– κ(D) = −∞ ⇐⇒ D is not torsion.

Here is another classification.

• κ(D) = −∞ ⇐⇒ degD < 0, or degD = 0 and D is not torsion.

• κ(D) = 0 ⇐⇒ degD = 0 and D is torsion.

• κ(D) = 1 ⇐⇒ degD > 0 ⇐⇒ D is ample.

Example 9.9 (Exceptional divisor). Let f : X → Y be a birational contraction of normal projective varieties.
Let D ≥ 0 be a divisor on X which is exceptional over Y , i.e., f∗D = 0. Then κ(D) = 0: We have an
injection H0(X,mD) ↪→ H0(Y,mf∗D) = H0(Y, 0) = k. So h0(X,mD) ≤ 1, ∀m ∈ Z>0. Since D ≥ 0,
h0(X,mD) = 1, ∀m ∈ Z>0. So κ(D) = 0.

Definition 9.10 (Big divisor). A Q-divisor D on a normal projective variety X is called big if κ(D) = dimX.
Every ample divisor is big.

Theorem 9.11 (Kodaira lemma). Let D,L be Q-divisors on a normal projective variety X where D is big
and Q-Cartier. Then, there is a rational number ϵ > 0 such that D − ϵL is big.

Proof. We may assume that X is smooth and D is Cartier. Take a general very ample divisor A and consider

0 −→ OX(mD −A) −→ OX(mD) −→ OA(mD|A) −→ 0

to deduce h0(X,mD −A) ̸= 0 for some m≫ 0. Next, pick n≫ 0 such that nA− L is ample. Then

κ(mnD − L) = κ(mnD − nA+ nA− L) ≥ κ(nA− L) = dimX.

So, mnD − L is big, hence D − 1
mnL is big.

Corollary 9.12. Let D be a nef Q-Cartier divisor on a normal projective variety X. Then, the following are
equivalent:

(1) D is big,

(2) there is an effective Q-divisor G and ample Q-divisors Am such that D ∼Q Am + 1
mG for every m.

Proof. (⇐= ) κ(D) > κ(D − 1
mG) = dimX.

( =⇒ ) Pick an ample divisor A. By Theorem 9.11, there is some t ∈ Q>0 such that D − tA is big. So,
h0(X, ℓ(D − tA)) ̸= 0 for some ℓ ∈ Z>0. Then ℓD − ℓtA ∼ N ≥ 0, and hence D − tA ∼Q G := 1

ℓN . Now,
∀m ∈ Z>0,

D − 1

m
G = D − 1

ℓ
N = (1− 1

m
)D +

1

m
(D − 1

ℓ
N)

is ample by Kleiman’s ampleness criterion because (1− 1
m )D is nef and 1

m (D − 1
ℓN) is ample.
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Definition 9.13 (Kodaira dimension of varieties). Let X be a normal projective variety. The Kodaira
dimension of X is κ(X) := κ(KX).

In dimension one, genus is the most important invariant. In higher dimension, it is the Kodaira dimension
that is important.

Example 9.14. Let X be a smooth projective curve of genus g. Recall g = h0(X,KX).

• κ(X) = −∞ ⇐⇒ g = 0 ⇐⇒ X ≃ P1 ⇐⇒ degKX < 0;

• κ(X) = 0 ⇐⇒ g = 1 ⇐⇒ X elliptic ⇐⇒ degKX = 0.

• κ(X) = 1 ⇐⇒ g ≥ 2 ⇐⇒ X general type ⇐⇒ degKX > 0.

Theorem 9.15 (Iitaka fibration). Let D be a Q-Cartier divisor on a normal projective variety X with
κ(D) ≥ 0. Then, there are projective morphisms f : W → X and g : W → Z from a smooth W ,

W
f

~~

g

  

X Z

such that

• f is birational,

• g is a contraction,

• κ(D) = dimZ, and

• if V is the generic fibre of g, then κ(f∗D|V ) = 0.

This is very useful for induction on dimension.

Remark 9.16. Let D be a Cartier divisor on a normal projective variety X. It is well-known that

κ(D) = max{dimϕmD(X) | h0(X,mD) ̸= 0}

if h0(X,mD) ̸= 0 for some m ∈ N.

Now assume X has Kawamata log terminal singularities. Consider the case D = KX with κ(KX) ≥ 0.
Conjectures in birational geometry say that we can run an MMP on X giving

X
MMP // Y

g

��

Z

where Y is projective and KY ∼Q g
∗A for some ample Q-divisor A on Z. Moreover, κ(X) = κ(Y ) = κ(A) =

dimZ. If G is a general fibre of g, KG ≡ 0 and κ(G) = 0. Taking a common resolution

W

~~   

��

X Y

g

��

Z
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we get the Iitaka fibration. Now assume dimX = 2.

• κ(X) = 0 ⇐⇒ dimZ = 0 ⇐⇒ KY ≡ 0 ⇐⇒ Y Calabi-Yau.

• κ(X) = 1 ⇐⇒ dimZ = 1 ⇐⇒ Y → Z elliptic fibration and KY ∼Q g
∗(ample).

• κ(X) = 2 ⇐⇒ dimZ = 2 ⇐⇒ KY big.

When κ(X) = −∞, the MMP produces a Mori-Fano fibration.
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10 The LMMP and some open problems

Definition 10.1 (Contraction of an extremal ray). Let X be a normal projective variety, NE(X) the
Kleiman-Mori cone of X. Let F be an extremal face of NE(X), e.g., an extremal ray. We say that F is
contractible if there exists a contra f : X → Z and an ample divisor A on Z such that

F = Ff∗A := {α ∈ NE(X) | f∗A · α = 0}.

In particular,
f(C) = pt. ⇐⇒ [C] ∈ F, ∀ curve C ⊆ X.

for any curve C ⊂ X. We say that f is the contraction of F .

10.2 (Types of contractions). Assume R is an extremal ray, contracted by f : X → Z. We have these types:
Divisorial: f is birational and it contracts at least some divisors.
Small: f is birational and it does not contracts divisors.
Fibration: f is not birational hence dimX > dimZ.

Definition 10.3 (Log minimal model program). Let (X,B) be a projective pair. If KX +B is not nef, then
there is an extremal ray R such that

KX +B ·R < 0.

Assume that R can be contracted, say by f : X → Z. If X → Z is a fibration, we stop. Assume not. If
X → Z is a divisorial contraction, let BZ = f∗B, and continue with (Z,BZ) as before. If X → Z is small, we
say that this is a flipping contraction. Assume the flip of X → Z exists, i.e., there exists

X

��

λ // X+

}}

Z

where X+ → Z is small, and KX+ +B+ = λ∗(KX +B) is ample over Z. That is, KX +B is negative over Z,
and KX+ +B+ is positive over Z. (Note that in the flip case, KZ +BZ is never Q-Cartier.) If the flip exists,
continue with (X+, B+) as before. This process is the log minimal model program (LMMP) on (X,B).

If the program stops, we get a model (Y,BY )

(X,B) 99K 99K · · · 99K 99K (Y,BY )

such that either

• KY +BY is nef: (Y,BY ) is a minimal model ; or

• there is a fibre type contraction Y → Z: Mori fibre space (or Fano fibration). (In this case, KY +BY is
negative over Z.)

Example 10.4. Let X be a smooth projective surface, and B = 0. The LMMP on X is just the minimal
model described in Section 3. The program ends with Y such that either

• Y is a minimal model; or

• there is a Mori fibre space Y → Z:
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– Y = P2 → Z = pt.,

– Y → Z is a P1-bundle over a smooth curve.

Remark 10.5. Assume (X,B) is projective with log canonical singularities. Then

• Every step of the LMMP exists.

• The LMMP is not unique.

Conjecture 10.6 (Termination). Let (X,B) be a projective log canonical pair. Then every LMMP on (X,B)

terminates with a minimal model or a Mori fibre space.

Remark 10.7. Known up to dimension 3 [Kawamata, Mori, Reid, Shokurov, etc].

Known in any dimension if (X,B) is Kawamata log terminal and KX +B is big [BCHM]. (Some choice
of the LMMP terminates.)

Conjecture 10.8 (Abundance). Let (X,B) be a projective log canonical pair, and KX+B nef. Then KX+B

is semi-ample, i.e., there is a contraction g : X → T such that KX +B ∼Q g
∗(ample). (⇐⇒ m(KX +B) is

free for some m ∈ N.)

Remark 10.9. Known up to dimension 3 [Miyaoka, Kawamata, Keel-Matsuki-McKernan].

Known in any dimension when (X,B) is Kawamata log terminal, KX +B is big [Kawamata, Shokurov].

A closely related conjecture is the following:

Conjecture 10.10 (Nonvanishing). Let (X,B) be a projective log canonical pair, and KX+B pseudo-effective,
i.e.,

KX +B + tA is big ∀t > 0,∀ ample divisor A.

Then the Kodaira dimension

κ(KX +B) ≥ 0.

Remark 10.11. Known up to dimension 3 [Miyaoka].

Conjecture 10.12 (Finite generation). Let (X,B) be a projective log canonical pair. Then

R(X,B) := ⊕m≥0H
0(X, ⌊m(KX +B)⌋)

is a finitely generated k-algebra (k = ground field).

Remark 10.13. Known up to dimension 4.

Known in any dimension when (X,B) is Kawamata log terminal [BCHM].

Conjecture 10.14 (Iitaka). Let f : X → Z be a contraction of smooth projective varieties. Then

κ(KX) ≥ κ(KF ) + κ(KZ)

where F is a general fibre of f .
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Example 10.15 (Divisorial contractions). (1) Let Z be a smooth projective variety, f : X → Z a blowup of
a smooth subvariety V ⊆ Z, and E the exceptional divisor. One can calculate

KX = f∗KZ + (c− 1)E, c = codimZ V.

Here f is the contraction of the extremal ray R on X generated by [C], C ⊆ E, f(C) = pt.
(2) Let E = OPn ⊕ OPn(−e), π : X = P(E) → Pn. Denote E ⊆ X by the section with E|E ≃ OP(−e),

E ≃ Pn. Let f : X → Z be the contraction of E to a point, which is a contraction of the extremal ray
generated by [C], C ⊆ E.

X //

P1-bundle
��

Z = cone over Pn

Pn

By adjunction we have KE ∼ (KX + E)|E . If L ⊆ E is a line, then

−n− 1 = KE · L = KX · L+ E · L = KX · L− e =⇒ KX · L = e− n− 1.

So,

• e < n+ 1 =⇒ KX · L < 0;

• e = n+ 1 =⇒ KX · L = 0;

• e > n+ 1 =⇒ KX · L > 0.

Write
KX + αE = f∗KZ .

Then
α =

e− n− 1

e
= 1− n+ 1

e
.

So if n + 1 ≤ e, then Z is not smooth because α ≥ 0 meaning singularities of Z are worse than terminal
singularities (smooth =⇒ terminal). Note (KX + βE) · L < 0 for any β ∈ (α, 1]. So f : X → Z is a step of
the LMMP for (X,βE).

Example 10.16 (Flip). Let Z ⊆ P4 be defined by xy− tu = 0. Note that Z is singular at p = (0 : 0 : 0 : 0 : 1).
Also, Z is the projective cone over V ≃ P1 × P1 ⊆ P3 defined by the same xy − tu = 0. Blowing up p gives

W ⊇ E ≃ P1 × P1

��

ww ''
X

ϕ
//

g
''

X+

g+
ww

Z.

where W → X and W → X+ are extremal divisorial contractions induced by the projections

E

~~   

P1 P1.
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Note that X,X+ are smooth, X → Z and X+ → Z are extremal small contractions. Here KX is Cartier, so
we can take g∗KZ and (g+)∗KZ Since g, g+ are small,

g∗KZ = KX , (g+)∗KZ = KX+ =⇒ KX · C = 0 = KX+ · C+.

So X → Z ← X+ is a KX-flop. Now take an ample divisor A+ on X+, and A;ϕ−1
∗ A+. Then one can show

A · C < 0. So X → Z is a KX + ϵA-flipping contraction (ϵ > 0 small). And X → Z ← X+ is the flip, which
is a step of the LMMP on (X, ϵA). Now W → X and W → X+ are both first steps of LMMP on (W, 0).

10.17. Let (X,B) be a projective log canonical pair, and f : X → Z a flipping contraction (f is an extremal
contraction, (KX +B) · C < 0, ∀C ⊆ X contracted by f). How to construct the flip of f?

KX +B X //

��

X+

~~

KX+ +B+

Z

Consider
R = ⊕m≥0f∗OX(m(KX +B)).

This is a graded OZ -algebra. Assume R is a finitely generated OZ -algebra: for any open affine U ⊆ Z, R(U)

is a finitely generated OZ(U)-algebra. Then it turns out

X+ = ProjR.

Conversely, if the flip exists, then one can show R is a finitely generated OZ-algebra and X+ = ProjR. In
particular, the flip is unique if it exists.

10.18 (Relation between outcomes of the LMMP). Let (X,B) be a projective log canonical pair. Assume we
can run an LMMP on (X,B). The outcome is not necessarily unique.

Example 10.19. Let X → P2 be the blowup of a point, B = 0.

X

~~

P1-bundle

  

P2 P1

Run LMMP on (X, 0). We have two choices:

• X → P1 is a Mori fibre space, Y = X outcome; or

• first do the contraction X → P2 and get the Mori fibre space P2 → pt.

Remark 10.20. When X is a smooth surface, B = 0, κ(KX) ≥ 0, it is well-known the outcome is unique.

Now in general assume (X,B) is projective, Kawamata log terminal, and assume (Y1, BY1), (Y2, BY2) are
minimal model outcomes of LMMP on (X,B).

Theorem 10.21 (Kawamata). Then (Y1, BY1
) and (Y2, BY2

) are connected by flops:

(X,B)

LMMP

tt

LMMP

**

(Y1, BY1
)

sequence of flops with respect to KYi
+ BYi

// (Y2, BY2
)
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If we have two Mori fibre spaces as outcomes, then relations are more complicated.

Example 10.22. Consider any birational map ϕ : P2 99K P2. Pick a smooth projective X with

X

bir
f~~

bir
g
  

P2

ϕ
// P2.

Write
KX + f∗KP2 +

∑
eiEi, Ei exceptional curves of f.

Then P2 is smooth =⇒ P2 has terminal singularities =⇒ ei > 0,∀i =⇒ running LMMP on KX over P2,
ends with P2, because sumeiEi is effective and exceptional. Similarly, running LMMP on KX over the other
P2 ends with P2. So both P2 are outcomes on LMMP on KX . But ϕ : P2 99K P2 can be complicated.
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11 Cone and contraction, vanishing, nonvanishing, and base point

freeness

The cone theorem allows us to perform the very first step of the LMMP, that is, to identify a negative extremal
ray and to contract it. The formulation of cone theorem was mainly inspired by Mori’s work. However,
the proof we present came from an entirely different set of ideas conceived and developed by Shokurov and
Kawamata (except the existence of rational curves which relies on Mori’s original work). These latter ideas
proved to be fundamental, far beyond the proof of the cone theorem.

Theorem 11.1 (Cone and contraction). Let (X,B) be a klt pair of dimension d with B rational. Then, there
is a countable set of (KX +B)-negative extremal rays {Ri} such that

• NE(X) = NE(X)KX+B≥0 +
∑
iRi.

• Ri can be contracted.

• {Ri} is discrete in NE(X)KX+B<0.

• Each Ri contains the class of some rational curve Ci satisfying

−2d ≤ (KX +B) · Ci.

• Let f : X → Y be the contraction of a KX +B-negative extremal ray R, and let L be a Cartier divisor
on X with L ·R = 0. Then, there is a Cartier divisor LY on Y such that L ∼ f∗LY .

Let (X,B) be a klt pair. If R is a KX +B-negative extremal ray, then we will see that it is not difficult
to find an ample Q-divisor H such that H + t(KX +B) is nef and that R is the only extremal ray satisfying
(H+t(KX+B)) ·R = 0. The main idea is to prove that t is a rational number and to prove that H+t(KX+B)

is semi-ample. The latter divisor then defines a contraction of R.

Theorem 11.2 (Base point free). Let (X,B) be a klt pair with B rational. Suppose that for a Cartier divisor
D with is nef, there is some rational number a > 0 such that aD − (KX +B) is nef and big. Then, mD is
free for any natural number m≫ 0.

Theorem 11.3 (Rationality). Let (X,B) be a klt pair with B rational. Let H be an ample Cartier divisor
on X. Suppose that KX + b is not nef. Then,

λ = max{t > 0 | t(KX +B) +H is nef}

is a rational number. Moreover, one can write λ = a
b where a, b ∈ N and b is bounded depending only on

(X,B).

Proof of Theorem 11.1. Step 1. We can assume that KX + B is not nef. For any nef Q-Cartier divisor D,
define

FD := {c ∈ NE(X) | D · c = 0}

which is an extremal face of NE(X). We will concentrate on those D for which dimFD = 1. Let C be the
closure of

NE(X)KX+B≥0 +
∑
D

FD
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where D run through nef Q-Cartier divisors with dimFD = 1. We want to prove that C = NE(X). Suppose
that C ̸= NE(X). Then we can find c ∈ NE(X) \ C and we can find a rational linear function N1(X)

ϕ−→ R
which is positive on C \{0} bur negative on c. Since N1(X) is dual to N1(X), there is some rational Q-Cartier
divisor G which gives ϕ (i.e., ϕ is nothing but intersection with G).

Step 2. Now if t≫ 0 then G− t(KX +B) is positive on NE(X)KX+B≤0 \ {0}. Define

γ := min{t > 0 | G− t(KX +B) is nef on NE(X)KX+B≤0}.

Note that G − γ(KX + B) is not positive on NE(X)KX+B≤0 \ {0}. So there is some c′ ∈ NE(X)KX+B<0

such that (G − γ(KX + B)) · c′ = 0. It turns out that G − γ(KX + B) is nef, otherwise there is some
c′′ ∈ NE(X)KX+B>0 satisfying

(G− γ(KX +B)) · c′′ ≤ 0.

This is not possible because G − γ(KX + B) is positive on any point in [c′, c′′] ∩ NE(X)KX+B=0. By
construction, G− γ′(KX +B) is ample for some γ′ > γ but very close to γ. Put H = G− γ′(KX +B). We
could assume that H is Cartier.

Step 3. Now put
λ = max{t | H + t(KX +B) is nef}

which is rational, and put
D = H + λ(KX +B)

which is nef. From the construction we see that

FD ∩ C = 0.

It might happen that dimFD > 1. We will try to find another D′ such that FD′ ⊆ FD and dimFD′ = 1.
First take an ample divisor H1 such that H1 and KX +B are linearly independent on FD. For s > 0, define

λ(s) := max{t | sD +H1 + t(KX +B) is nef}.

Since D is numerically trivial on FD, it follows that λ(s) is bounded. Moreover, if s′ > s≫ 0 then λ(s′) ≥ λ(s).
By the rationality theorem, λ(s) are rational with bounded denominators. Therefore, λ(s) is independent of s
when s≫ 0. In particular, FsD+H1+λ(s)(KX+B) ⊆ FD, where the inclusion is strict because H1 and KX +B

are linearly independent on FD. Arguing inductively, there is a rational nef divisor D′ such that FD′ ⊆ FD
and dimFD′ = 1. This contradicts the above assumptions. Therefore, C = NE(X).

Step 4. Let D be a nef Q-Cartier divisor such that dimFD = 1 and such that D = H + t(KX +B) for
some ample Cartier divisor H and some rational number t > 0. Then by the base point free theorem D is
semi-ample. Therefore, the extremal ray FD can be contracted.

Step 5. We will prove that such Fd cannot accumulate in NE(X)KX+B<0. Suppose that this is not the
case, let FDi

has a limit R which is a ray in NE(X) and suppose that (KX +B) ·R < 0. We take the Di to
be the form Di = Hi + ti(KX +B) for certain ample Cartier divisors Hi and rational numbers ti > 0. By
the argument, for each i, there exists some si ≫ 0 such that if D′

i = H + siSi + t′i(KX +B) where H is a
fixed ample divisor and ti is the maximal number making D′

i nef. Then FD′
i
= FDi . For each i, let ci to be

an element of NE(X) such that (KX +B) · ci = −1 and ci ∈ FDi
. Then H · ci = −t′i(KX +B) · ci = t′i. On

the other hand, t′i is a rational number with bounded denominator and H · ci = t′i is bounded. Thus, there
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are only finitely possibilities for the H · ci. But if H is general, then this is possible only if there is finitely
many ci. Therefore, NE(X) = NE(X)KX+B≥0 +

∑
Ri where Ri are the negative extremal rays. We have

already proved that each Ri is contractible.
Step 6. The fact that Ci can be chosen to be rational and satisfying −2d ≤ (KX +B) ·Ci is proved using

very different arguments.
Step 7. Let L,R and f : X → Y be as in the last claim of the theorem. Let D be a nef Cartier divisor

such that FD = R and D = H + t(KX + B) where H is an ample Cartier divisor. If a ≫ 0, then L+ aD

is nef (because D is nef positive on NE(X)KX+B≥0 hence L + aD is also positive on it when a ≫ 0) and
FL+aD = FD. By the base point free theorem, for some large m, m(L+ aD) and (m+ 1)(L+ aD) are both
base point free and both are pullbacks of Cartier divisor on Y . This implies that L+ aD is also the pullback
of some Cartier divisor on Y . If we choose a sufficiently divisible, then aD is the pullback of some Cartier
divisor on Y . Therefore, L is the pullback of some Cartier divisor on Y .

Theorem 11.4 (Kawamata-Viehweg vanishing). Let (X,B) be a klt pair. Let N be an integral Q-Cartier
divisor on X such that N ≡ KX +B +M where M is nef and big. Then,

Hi(X,OX(N)) = 0

for any i > 0.

Theorem 11.5 (Shokurov Nonvanishing). Let (X,B) be a projective klt pair where B is rational. Let G ≥ 0

be a Cartier divisor such that aD+G− (KX +B) is nef and big for some nef Cartier divisor D and rational
number a > 0. Then,

H0(X,mD +G) ̸= 0

for m≫ 0.

Remark 11.6. Suppose that S is a smooth prime divisor in a smooth projective variety X. Then we have
an exact sequence

0 −→ OX(−S) −→ OX −→ OS −→ 0.

Let D be a Cartier divisor on X. Then, we have the exact sequence

0 −→ OX(D − S) −→ OX(D) −→ OS(D|S) −→ 0,

which gives the following exact sequence of cohomologies

0 −→ H0(X,D − S) −→ H0(X,D)
f−→ H0(S,D|S)

g−→

H1(X,D − S) h−→ H1(X,D) −→ H1(S,D|S).

It is often very important to prove that h0(X,D) ̸= 0. We like to lift a section on S to X. Assume that
h0(S,D|S) ̸= 0. In general this does not imply that h0(X,D) ̸= 0. One of the best things that could happen
is that h1(X,D − S) = 0. If this vanishing holds then f is surjective. In fact, if h is injective, then again f is
surjective.

If h0(S,D|S) ̸= 0 and h1(X,D − S) = 0, then this means that S is not a component of FixD.
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Let X be a complex manifold, and TX its tangent bundle. A Hermitian form h on X is a tensor 2-form,
locally can be written as h =

∑
jk hjkdzj ⊗ dzk, such that

• h is C-linear in the first and C-anti-linear in the second variable;

• h(u, v) = h(v, u) for any u, v ∈ TX .
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12 The base point free theorem

Recall the non-vanishing theorem of Shokurov:

Theorem 12.1 (non-vanishing). Let (X,B) be a projective klt pair, D nef Cartier divisor, G ≥ 0 Cartier
divisor. Assume that aD +G− (KX +B) is nef and big for some a ∈ Q>0. Then

H0(X,mD +G) ̸= 0

for m≫ 0.

Theorem 12.2 (base point free). Let (X,B) be a projective klt pair., D a nef Cartier divisor. Assume that
aD − (KX +B) is nef and big for some a ∈ Q>0. Then mD is base point free for m≫ 0, m ∈ N.

Proof. We apply induction on dimension. The case dimX = 1 is easy (do as exercise). So assume dimX ≥ 2.
By assumption

aD = KX +B +A,

where A is nef and big. By Corollary 9.12, there is a Q-divisor C ≥ 0 such that for n ≫ 0 we can write
A = A′ + 1

nC, where A′ is ample. Since n≫ 0, (X,B + 1
nC) is klt. Note aD = KX + B + 1

nC + A′ is klt
plus ample. So replacing (X,B) with (X,B + 1

nC), and replacing A with A′, can assume A ample. Applying
Shokurov non-vanishing with G = 0, we get

H0(X,mD) ̸= 0, for m≫ 0.

Pick b ∈ N such that H0(X, bD) ̸= 0.
If Bs |bD| = ∅ for each choice of b, then Bs |mD| = ∅ for m≫ 0, so we are done. Assume Bs |bD| ̸= ∅ for

a choice of b. By the theory of resolution of singularities, there is a log resolution f : Y → X of (X,B +D)

such that 
f∗bD ∼M + F,

Bs |M | = ∅,

Fix |f∗bD| = F, Bs |f∗bD| = SuppF.

For each ℓ ∈ N, we can write f∗ℓbD ∼ ℓM + ℓF ∼ N + ℓF where N is reduced with smooth components, by
Bertini theorem (N is a general member of |ℓM |). We aim to show

SuppF ̸⊆ Bs |f∗mD|, ∀m≫ 0.

Fix m0 ≫ 0. We have

m0D = aD + (m0 − a)D = KX +B + (m0 − a)D +A.

By Corollary 9.12, can write
f∗((m0 − a)D +A) = H + E,

with H ample, E ≥ 0 with fixed support, Supp(N + ℓF ) ⊆ E (ℓ as above, fixed). Now

f∗(m+m0)D = f∗(KX +B +mD + (m0 − a)D +A)

= f∗(KX +B + tD) + f∗(m− t)D + f∗((m0 − a)D +A)

= f∗(KX +B + tD) + f∗(m− t)D +H + E.
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Since (X,B) is klt,
f∗(KX +B) = KY +B′

Y − L′

such that (Y,B′
Y ) is klt, L′ ≥ 0 exceptional over X, B′

Y and L′ have no common components. We can choose
t > 0 and modify coefficients of E such that

f∗(KX +B + tD) + E = KY +B′
Y − L′ + E +

t

ℓb
N +

t

b
F

= KY +BY + S − L

where 

(Y,BY ) is klt,

S reduced, irreducible, a component of F,

L ≥ 0 exceptional over X,

BY , S, L have no common components.

Now

f∗(m+m0)D + ⌈L⌉ − S = f∗(KX +B + tD) + f∗(m− t)D +H + E + ⌈L⌉ − S

= KY +BY + S − L+ f∗(m− t)D +H + ⌈L⌉ − S

= KY +BY + ⌈L⌉ − L+ f∗(m− t)D +H.

By construction, (Y,BY + ⌈L⌉ − L) klt,

f∗(m− t) +H ample.

Then by Kawamata-Viehweg vanishing theorem,

H1(Y, f∗(m+m0)D + ⌈L⌉ − S) = 0.

Therefore, considering
0 −→ OY (−S) −→ OY −→ OS −→ 0

and tensoring with
OY (f∗(m+m0)D + ⌈L⌉)

we get

H0(Y, f∗(m+m0)D + ⌈L⌉) α−→ H0(S, f∗(m+m0)D + ⌈L⌉|S) −→ H1(Y, f∗(m+m0)D + ⌈L⌉ − S) = 0,

where α is surjective. On the other hand,

f∗(m+m0)D + ⌈L⌉|S = (KY +BY + S + ⌈L⌉ − L)|S + (f∗(m− t)D +H)|S ,

nef plus effective equals klt plus ample. Therefore, by Shokurov non-vanishing,

H0(S, f∗(m+m0)D + ⌈L⌉|S) ̸= 0, m≫ 0.

Then α being surjective implies that

H0(Y, f∗(m+m0)D + ⌈L⌉) ̸= 0 and S ̸⊆ Bs |f∗(m+m0)D + ⌈L⌉|, m≫ 0
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Since L ≥ 0 is exceptional over X,

H0(Y, f∗(m+m0)D) ̸= 0 and S ̸⊆ Bs|f∗(m+m0)D|, m≫ 0

and hence
H0(Y, f∗mD) ̸= 0 and S ̸⊆ Bs|f∗mD|, m≫ 0.

In particular,
SuppF ̸⊆ Bs|f∗mD|, ∀m≫ 0.

Now pick a large prime number b. Then can assume H0(Y, f∗bD) ̸= 0 as above. The above argument shows,
there is some n such that

Bs|bnD| ⊊ Bs|bD|,

noting that Bs|cbD| ⊆ Bs bD, ∀c ∈ N . Repeating this, can choose n such that

Bs|bnD| = ∅.

Choose another large prime number b′ and find n′ such that

Bs|b′n
′
D| = ∅.

Now any m≫ 0 can be written as m = pbn + qb′n
′
for some p, q ∈ Z≥0. Therefore,

Bs |mD| ⊆ Bs |pbnD| ∪ Bs |qb′n
′
D| ⊆ Bs |bnD| ∪ Bs |qb′n

′
D| = ∅.

Hence Bs|mD| = ∅, ∀m≫ 0.

Remark 12.3. Let (X,B) be a projective klt pair, KX +B nef and big. Then m(KX +B) is base point
free for some m > 0:

• choose ℓ > 1 such that ℓ(KX +B) is Cartier.

• ℓ(KX +B) = (KX +B) + (ℓ− 1)(KX +B) is klt plus nef and big.

Then nℓ(KX +B) is free for n≫ 0. Now pet m = nℓ, n≫ 0.
This shows that the abundance conjecture holds when (X,B) is klt and KX +B is big.

Exercise 12.4. Assume (X,B) is projective klt, KX + B nef, B big. Then m(KX + B) is free for some
m > 0.

Example 12.5. The base point free theorem does not hold for log canonical pairs. We construct an example.
Let E be an elliptic curve, V projective cone over E. Recall we have

C
� � //

isom

X

π P1-bundle
��

f

bir // V

E

Pick a divisor N on E such that degN = 0 but mN ̸∼ 0, ∀m > 0. Pick a very ample divisor H on V . Let
A ∈ |f∗ℓH| be general and let B = C +A.

Claim: KX +B is nef and big.
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It is enough to show KX + B is nef because increasing ℓ, can make it big. If KX + B is not nef, then
(KX +B) ·R < 0 for some extremal ray R. Then (KX + C) ·R < 0 and hence (KX + αC) ·R < 0 for some
α ∈ (0, 1). Since (X,αC) is klt, by the cone theorem, R is generated by some curve L with

−4 ≤ (KX + αC) · L < 0.

Note that L ̸= C since (KX + C) · C = 0. So f∗H · L > 0 and A · L = ℓf∗H · L ≥ ℓ. But since ℓ≫ 0,

(KX +B) · L = (KX + C +A) · L = (KX + αC) · L+ (1− α)C · L+A · L ≥ −4 + ℓ > 0,

a contradiction.
Now let D = 2(KX +B + π∗N). Then D is nef and big, D − (KX +B) is nef and big. But mD is not

free for any m > 0 because

mD|C = 2m(KX + C + π∗N)|C ∼ 2mπ∗N |C ̸∼ 0,

for any m > 0.

Remark 12.6 (Effective base point free). Kollár proved the following effective version of Kawamata-Shokurov
base point free theorem.

Assume (X,B) is projective klt of dimension d, D nef Cartier, aD − (KX +B) is nef and big for some
a ∈ N. Then

2(d+ 2)!(a+ d)D

is free.
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13 The non-vanishing theorem

In this lecture, we prove Shokurov’s non-vanishing theorem. First, there are some preparations.

13.1 Riemann-Roch

Let X be a projective variety of dimension d. Let F be a coherent sheaf. The Euler characteristic of F is

χ(F) = h0(X,F)− h1(X,F) + h2(X,F)− . . .

For a divisor L, let χ(L) = χ(OX(L)). If L,L′ are Cartier divisors and L ≡ L′, then χ(L) = χ(L′).

Theorem 13.1. Let D be a Cartier divisor, then

χ(mD) =
(mD)d

d!
+ lower degree terms

is a polynomial in m of degree ≤ d.

Reference: [Kollár-Mori book, 1.36, 2.57].

13.2 Multiplicity of linear systems

Let X be a projective variety, x ∈ X a smooth closed point, and D a Cartier divisor with h0(X,D) > 0.
Changing D linearly, can assume x /∈ SuppD. Pick a basis h1, . . . , hn of H0(X,D) (hi ∈ k(X), the function
field). Each h ∈ H0(X,D) is uniquely written as h =

∑
aihi, ai ∈ k, the ground field. Note that hi is regular

at x because Div(hi) +D ≥ 0 and x /∈ SuppD. Pick local parameters t1, . . . , td at x. Each h ∈ H0(X,D)

can be described as a power series ϕh in terms of t1, . . . , td near x. This follows from the fact: Ox is the local
ring at x, mx the maximal ideal. Since mx = (t1, . . . , td), mlx/ml+1

x generated by monomials of degree l in
t1, . . . , td.

Now, multiplicity of Div(h) +D at x > l ⇐⇒ ϕh ∈ ml+1
x ⇐⇒ ϕh has no term of degree ≤ l. So, since

ϕh =
∑
aiϕhi

, if h0(X,D) > #{monomials in t1, . . . , td of degree ≤ l}, then we can find h ∈ H0(X,D) with
multiplicity > l at x. There exists 0 ≤ D′ ∼ D with multiplicity > l at x, because vanishing of coefficients of
each monomial is a linear condition on H0(X,D).

Note

#{monomials of degree ≤ l} = (l + 1)d

d!
+ lower degree terms.

13.3 The non-vanishing theorem

Theorem 13.2. Let (X,B) be a projective klt pair, D nef Cartier divisor, G ≥ 0 Cartier divisor, aD +G−
(KX +B) nef and big for some a ∈ Q>0. Then h0(X,mD +G) > 0, ∀m≫ 0.

Proof. We apply induction on d = dimX. Case d = 1: do an exercise. Assume d ≥ 2.

Step 1 : Reduce to smooth case. By Corollary 9.12, can write

f∗(aD +G− (KX +B)) = H + E′

where H is ample, E′ ≥ 0 with small coefficients.
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Moreover, (X,B) klt =⇒ can write f∗(KX +B) = KX +BY −G′, such that (Y,BY ) klt, G′ ≥ 0 Cartier,
exceptional over X. Then

f∗(aD +G− (KX +B)) = f∗aD + f∗G− (KY +BY −G′)

= f∗aD + f∗G+G′ − (KY +BY ).

Thus
f∗aD + f∗G+G′ − (KY +BY + E′) = H

where E′ can be chosen such that (Y,BY + E′) is klt. Thus replacing (X,B), D, G with (Y,BY + E′), f∗D,
f∗G+G′, can assume X smooth, D,G with simple normal crossing singularities.

Step 2. Assume D ≡ 0. By assumption, aD +G = KX +B+ nef and big. Then D ≡ 0 =⇒mD +G = KX +B + nef and big,∀m ∈ N,

G = KX +B + nef and big.

Then by Kawamata-Viehweg vanishing,

hi(X,mD +G) = 0, ∀i > 0,m ∈ N

hi(X,G) = 0, ∀i > 0.

Hence

h0(X,mD +G) = χ(mD +G) = χ(G) = h0(X,G) > 0.

So we are done in the case D ≡ 0. From now on we assume D ̸≡ 0.
Step 3. Put A := aD +G− (KX +B). We can assume A ample by Step 1. For a ≤ n ∈ N,

(nD +G− (KX +B))d = ((n− a)D + aD +G− (KX +B))d

= ((n− a)D +A)d

= ((n− a)D)d + d((n− a)D)d−1 ·A+ · · ·+ d(n− a)D ·Ad−1 +Ad

≥ d(n− a)D ·Ad−1.

Since A ample, D ̸≡ 0 nef, D · Ad−1 > 0. Pick k ∈ N such that kA and k(K)XB are Cartier. By Serre
vanishing and by Riemann-Roch, for fixed n ≥ a, l≫ 0,

h0(X, kl(nD +G− (KX +B))) = χ(kl(nD +G(KX +B)))

=
(kl(nD +G− (KX +B)))d

d!
+ lower degree terms

is a polynomial in l. So taking n large enough, can ensure

h0(X, kl(nD +G− (KX +B))) > #{monomials of degree ≤ 2kld in d varieties}.

By Section 13.2, for a closed x ∈ X \ SuppG, there exists 0 ≤ N ∼ kl(nD+G− (KX +B)) with multiplicity
> 2kld at x. Put Ln = 1

klN . Then

0 ≤ Ln ∼Q nD +G− (KX +B)
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and multiplicity of Ln at x is > 2d. In particular, (X,B + Ln) is not log canonical at x: just consider the
blowup of X at x. Now take a log resolution g : W → X. For m≫ 0 and t ∈ Q>0, can write

g∗(mD +G) = g∗(KX +B + tLn +mD +G− (KX +B)− tLn)

∼Q g
∗(KX +B + tLn +mD +G− (KX +B)− tnD − tG+ t(KX +B))

= g∗(KX +B + tLn + (m− tn)D + (1− t)G− (1− t)(KX +B))

= g∗(KX +B + tLn + (m− tn− (1− t)a)D + (1− t)aD + (1− t)G− (1− t)(KX +B))

= g∗(KX +B + tLn) + g∗(m− tn− (1− t)a)D + g∗(1− t)A

∼Q g
∗(KX +B + tLn) +H + E′,

where H is ample, E′ ≥ 0. We can choose t,H,E′ such that

g∗(KX +B + tLn) +H + E′ = KY +BY + S −G′ +H

and 

(Y,BY ) klt,

S reduced, irreducible, not a component of BY ,

G′ ≥ 0 Cartier, exceptional over X,

H ample.

We then get
g∗mD + g∗D +G′ ∼Q KW +BW + S +H.

Then
(g∗mD + g∗G+G′)|S ∼Q (KW +BW + S)|S +H|S ,

so by induction,
h0(S, (g∗mD + g∗G+G′)|S) > 0, ∀m≫ 0.

On the other hand,
g∗mD + g ∗G+G′ − S ∼Q KW +BW +H

so by Kawamata-Viehweg vanishing,

h1(W, g∗mD + g∗D +G′ − S) = 0.

Consider the short exact sequence

0 −→ OW (g∗mD + g∗G+G′ − S) −→ OW (g∗mD + g∗G+G′) −→ OS((g∗mD + g∗G+G′)|S) −→ 0

which induces

H0(W, g∗mD + g∗G+G′)→ H0((S, g∗mD + g∗G+G′)|S)→ H1(W, g∗mD + g∗G+G′ − S) = 0.

We deduce that
h0(W, g∗mD + g∗G+G′) > 0, ∀m≫ 0

and hence
h0(X,mD +G) > 0, ∀m≫ 0.
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Remark 13.3. We have given an almost complete proof of

• the cone and contraction theorem,

• the base Point free theorem,

• the non-vanishing theorem,

except that we didn’t prove the rationality theorem. To run the MMP we need existence of flips. In dimension
2, flips does not appear, so we can run MMP on any projective klt pair.

Remark 13.4. We discussed the above theorems only for projective klt pairs. Assume (X,B) is klt and
X → Z is a projective morphism, but X may not be projective. Then above theorems also hold for (X,B)

over Z. We only need some small changes in the proofs. For example, if D is Cartier and nef over Z, and if
aD − (KX + B) is nef and big over Z, then mD is base point free over Z, ∀m ≫ 0. For more details, see
[Kollár-Mori, section 3.6].
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14 D-flips and finite generation

14.1 Finite generation problem

Let f : X → Z be a contraction of normal varieties, D a Q-divisor on X. Define

R(D/Z) = ⊕m≥0f∗OX(⌊mD⌋)

which is a graded OZ-algebra: for any open U ⊆ Z, R(D/Z)(U) is a graded OZ(U)-algebra.

Question 14.1. When is R(D/Z) a finitely generated OZ-algebra? That is, Z can be covered by open affine
U such that R(D/Z)(U) is a finitely generated OZ-algebra.

When Z = pt, we write R(D) instead of R(D/Z). In this case, R(D) is a k-algebra (k = ground field).

Exercise 14.2 (Truncation principle). Let I ∈ N. Show that R(D/Z) is a finitely generated OZ-algebra if
and only if R(ID/Z) is a finitely generated OZ-algebra.

More generally, given a Noetherian graded integral domain R = ⊕m≥0Rm, then R is a finitely generated
R0-algebra if and only if ⊕m≥0RmI is a finitely generated R0-algebra.

Lemma 14.3. Let X f−→ Y
g−→ Z be contractions of normal varieties. Then R(D/Z) is a finitely generated

OZ-algebra if and only if R(f∗D/Z) is a finitely generated OZ-algebra.

Proof. By the truncation principle, we can assume D is Cartier. For each open U ⊆ Z,

R(D/Z)(U) ≃ ⊕m≥0H
0(g−1U,mD) ≃ ⊕m≥0H

0(f−1g−1U,mf∗D) ≃ R(f∗D/Z)(U).

So the claim follows.

Lemma 14.4 (Zariski). Let h : X → Z be a contraction of normal varieties, D a divisor on X. If D is
semi-ample over Z, then R(D/Z) is a finitely generated OZ-algebra.

Proof. Here D is semi-ample over Z means, ID is free over Z for some I ∈ N. And D free over Z means: Z
covered by open affine U ⊆ Z such that D|f−1U free.

Can replace Z with such U , so assume Z affine and D free. Now D defines a contraction f : X → Y such
that h is factored as X f−→ Y → Z and a divisor H on Y such that D ∼ f∗H for some Cartier divisor H on
Y ample over Z.

By the truncation principle can assume H very ample over Z. Also can assume Hi(Y,mH) = 0,
∀i > 0,m > 0. By Lemma 14.4, enough to show R(H/Z) is a finitely generated OZ-algebra. Enough to
show: R(H/Z) := R(H/Z)(Y ) is a finitely generated A := OZ(Z)-algebra. Note that there exists a closed
embedding i : Y ↪→ PnZ/Z for some n, such that H ∼ i∗L, where L is the pullback of some hyperplane under
PnZ = Pn × Z → Pn.

Consider

0 −→ OPn
Z
(mL)⊗ IY −→ OPn

Z
(mL) −→ OY (mL|Y ) ≃ OY (mH) −→ 0

where IY is the ideal sheaf of Y , which gives

H0(PnZ ,mL) −→ H0(Y,mH) −→ H1(PnZ ,OPn
Z
(mL)⊗ IY ) = 0
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for m≫ 0, by Serre vanishing. So enough to show R(L/Z) is a finitely generated OZ-algebra. This follows
from the fact:

R(L/Z) := R(L/Z)(PnZ) = ⊕m≥0H
0(PnZ ,mL) ≃ A[t0, . . . , tn]

where ti are variables and A = OZ(Z) (See Hartshorne, Chapter II, Proposition 5.13).

Definition 14.5 (D-flips). Let f : X → Z be a contraction of normal varieties, D a Q-Cartier Q-divisor on
X. Then f is a D-flipping contraction if

• f is small, birational, extremal;

• −D ample over Z.

A D-flip is a diagram
X

φ
//

f
��

X+

f+

}}

Z

such that

• f+ small birational contraction,

• X+ normal,

• D+ := φ∗D ample over Z.

Theorem 14.6. Under the notation of Definition 14.5 we have: The D-flip exists if and only if R(D/Z) is
a finitely generated OZ-algebra.

Proof. ( =⇒ ) R(D/Z) ≃ R(D+/Z) because f, f+ are small. Note that R(D+/Z) is a finitely generated
OZ-algebra by Lemma 14.4.

( ⇐= ) Can assume Z affine, say Z = SpecA, and that R(D/Z) := R(D/Z)(Z) is a finitely generated
A-algebra. Can find I ∈ N such that R(ID/Z) is generated by degree 1 elements as an A-algebra. Replacing
D with ID, can assume R(D/Z) is generated by degree 1 elements.

Put X+ = ProjR(D/Z) and f+ : X+ → Z the associated morphism, and OX+(1) the associated invertible
sheaf, which is ample over Z (See Hartshorne, pp. 160–161). By Remark 14.7, X+ is a normal variety.

Note that f+ is birational: f |f−1V is an isomorphism where V is the smooth locus of Z. So f+|f−1V is
also an isomorphism.

We show f+ is small. Assume not, say f+ contracts a prime divisor E ⊆ X+. Let L be the divisor
corresponding to OX+(1). Then OX+(mL) ⊊ OX+(mL+ E). Since L is ample over Z,

f+∗ OX+(mL) ⊊ f+∗ OX+(mL+ E)

for some m≫ 0, by [Hartshorne, Chapter II, 5.15]. Now E is exceptional over Z, so

f+∗ OX+(mL+ E) ⊆ OZ(mLZ), LZ = f+∗ L.

But f+ is an isomorphism over V , the smooth locus of Z, so can choose L such that LZ +D, so OZ(mLZ) =
OZ(mf∗D). This contradicts

f+∗ OX+(m) = f∗OX)(mD) = OZ(mf∗D) = OZ(mLZ), m≫ 0.
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Then

X
φ

//

f
��

X+

f+

}}

Z

is the required D-flip.

Remark 14.7. Let Z be a normal variety and R a finitely generated graded OZ-algebra with the degree 0

piece R0 = OZ . Let I ∈ N, and let R[I] be the subalgebra of R consisting summands of degree divisible by I,
i.e., the piece of degree 0, I, 2I, . . . . The injection R[I] → R induces a rational map

ϕ : ProjR 99K ProjR[I]

over Z. By replacing Z with an open affine subset, from now on we assume that Z is affine, and instead of
the above sheaves we consider the corresponding algebras R = R(Z) and R[I] = R[I](Z). Now, ϕ is actually
a morphism. Indeed, if P ∈ ProjR, then P ∩R[I] ∈ ProjR[I] because P ∩R[I] does not contain all elements
of P [I] of positive degree since α ∈ R implies that αI ∈ R[I].

Moreover, we show that ϕ is locally an isomorphism. If α ∈ R[I] has positive degree nI, then the induced
localised map R[I]

(α) → R(α) is again injective. In is actually, also surjective. Indeed, let β
αr be an element of

R(α). Then, by definition, deg β = degαr = rnI. So, β ∈ R[I]
(α) hence βar is inside R[I]

(α). Now let α1, . . . , αl

be elements of R[I]
(α) which generate R[I]

(α) as an R0-algebra where R0 = OZ(Z).
Let I be the ideal of R consists of all elements of positive degree, I := I ∩ R[I], and J the ideal of R

generated by the α1, . . . , αl. Then, I =
√
I [I]R ⊆

√
J ⊆ I. So, the principal open sets D+(αi) ⊆ ProjR

and D[I]
+ (αi) ⊆ ProjR[I] defined by the αi cover ProjR and ProjR[I]. Now the isomorphisms R[I]

(αi)
→ R(αi)

imply that

ϕi : D+(αi)→ D
[I]
+ (αi)

are isomorphisms hence ϕ itself is an isomorphism.

Let S be the graded OZ-algebra whose degree n summand is the degree nI summand of R[I], and
multiplication in S is the one induced by R[I]. Then, one can see that ProjS is isomorphic to Proj cR[I] as
schemes over Z.

If R = R(X/Z,D) where D is a Q-divisor on some normal variety X projective over Z, then S =

R(X/Z, ID). Moreover, in this case, ProjR(X/Z,D) is a normal variety: we assume Z is affine and that
D ≥ 0; note that since R(X/Z,D) is an integral domain, ProjR(X/Z,D) is an integral scheme with function
field R(X/Z,D)(0). If α is any homogeneous element of degree l, then we show that R(X/Z,D)(α) is integrally
closed in R(X/Z,D)(0). Assume that β

γ ∈ R(X/Z,D)(0) satisfying an equation

(
β

γ

)n
+

λ1
αr1

(
β

γ

)n−1

+ · · ·+ λn

αrn
= 0

where λi

αri
∈ R(X/Z,D)(α). Let r = max ri. Multiplying the equation by αnr, and replacing βαr

γ by θ and
replacing λiαir−ri by ρi we get an equation

θn + ρ1θ
n−1 + · · ·+ ρn = 0
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and it is enough to prove that θ ∈ R(X/Z,D) and that it has degree rl, i.e., θ ∈ H0(X, rlD). Let P be a
prime divisor on X. Then, from the equation we can estimate

nµP (θ) = µP (θ
n) ≥ min{µP (ρi + (n− i)µP (θ)}

where µP stand for the multiplicity. If the minimum is attained at µP (ρj) + (n − j)µP (θ), then since
ρi ∈ H0(X, rljD), µP (ρj) ≥ rljµP (D). Thus,

jµP ≥ lrjµP (D).

Therefore, θ ∈ H0(X, rlD) and we are done.

Remark 14.8. If a D-flip exists, then it is unique. By the theorem the flip is determined by R(D/Z).

Definition 14.9. Let (X,B) be a log canonical pair. Let f : X → Z be a contraction of normal varieties,
KX +B big over Z. The log canonical model of (X,B) over Z exists if there is a diagram

X
φ

//

f
  

Y

g
��

Z

where

• φ−1 does not contract divisors;

• KY +BY := φ∗(KX +B) is ample over Z;

• α∗(KX +B) ≥ β∗(KY +BY ) for any common resolution

W

α

~~

β

  

X

f
  

Y

g
~~

Z

Theorem 14.10. Let (X,B) be a lc pair, X → Z a contraction of normal varieties, KX + B big over Z.
Then the log canonical model of (X,B) over Z exists if and only if R(KX + B/Z) is a finitely generated
OZ-algebra.

Proof. ( =⇒ ) Take a common resolution as in Definition 14.9:

W

α

~~

β

  

X

f
  

Y

g
~~

Z
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Then α∗(KX +B)− β(KY +BY ) is effective and exceptional over Y . So,

R(I(KX +B)/Z) ≃ R(Iα∗(KX +B)/Z) ≃ R(Iβ∗(KY +BY )/Z) ≃ R(I(KY +BY )/Z).

Now R(KY +BY /Z) is a finitely generated OZ -algebra because KY +BY is ample over Z, hence I(KY +BY )

is very ample over Z, so we can apply Lemma 14.4. Thus R(KX +B/Z) is a finitely generated OZ-algebra.
(⇐= ) Can assume Z is affine, because the log canonical model is unique if it exists. There exists some

I ∈ N, such that R(I(KX + B)) is generated by degree one elements. Let Y = ProjR(I(KX + B)), and
Y → Z the associated morphism, OY (1) the associated invertible sheaf which is ample over Z. Take a
resolution α : W → X such that α∗I(KX +B) =M + F , where M is free and F = Fix|α∗I(KX +B)|. Since
R(I(KX +B)/Z) is generated by degree one elements,

mF = Fix|α∗mI(KX +B)|, ∀m.

Thus R(I(KX + B)/Z) ≃ R(M/Z). Then M defines a contraction β : W → Y ≃ ProjR(M/Z). Then we
get an induced birational map

X
φ

//

  

Y

��

Z

such that φ does not contract divisors (do as an exercise). So KY +BY = φ(KX +B) = β∗M is ample over
Z, and OY (1) is the sheaf associated to the divisor I(KY +BY ). Therefore, Y is the log canonical model of
(X,B) over Z.

Remark 14.11. (1) In general it is expected that log canonical models of lc pairs always exist, but this is
known only when dimX ≤ 4.

(2) We can replaceKX+B big over Z withKX+B pseudo-effective over Z and still expect thatR(KX+B/Z)

finitely generated. In this case, we can also defined the log canonical model as Y := ProjR(KX +B/Z).
We get a diagram

X
φ

//

  

Y

��

Z

But φ is birational only when KX +B is big over Z.

(3) When (X,B) is klt, R(KX + B/Z) is always finitely generated and so a log canonical model exists
(BCHM). In particular, flips exists for KX +B-negative flipping contraction for klt pairs (X,B).

Remark 14.12. Let f : X → Z be a contraction of normal varieties, D a Q-Cartier Q-divisor on X. In
general R(D/Z) is not always finitely generated. In fact when D is nef and big over Z, it is well-known that
R(D/Z) is finitely generated if and only if D is semi-ample over Z. We saw in Example 12.5 an example of a
nef and big divisor D which is not semi-ample.
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15 Existence of flips and extension theorems

Definition 15.1 (dlt pairs). Let (X,B) be a pair, φ : W → X a log resolution. WriteKW+BW = φ∗(KX+B).
If a component D of BW has coefficient ≥ 1, we call φ(D) a non-klt centre of (X,B). Union of all non-klt
centres is denoted Nklt(X,B).

We say that (X,B) is divisorial log terminal (dlt) if (X,B) is lc, and it is log smooth near generic point
of each non-klt centre.

Fact: (X,B) is dlt if and only if there is a log resolution φ : W → X such that coeffD BW < 1 for any
prime divisor D ⊆W which is exceptional over X.

Example 15.2. (1) (X,B) log smooth, then dlt.

(2) (X,B) klt, then dlt.

(3) (P2, B = nodal curve) lc, not dlt.

(4) (P2, B = B1 +
1
2B2) is dlt, where B1 is a line, B2 is a nodal curve and B1 intersects B2 transversally

(not passing through singularities of B2).

Fact: Let (X,B) be dlt, S component of B with coefficient 1. Then S is normal. ([Kollár-Mori, Corollary
5.52]).

Definition 15.3 (plt pairs). A dlt pair (X,B) is purely log terminal (plt) if

• no two components of ⌊B⌋ intersects; or equivalently

• its only non-klt centres are the components of ⌊B⌋.

Example 15.4. (1) (A2, intersecting lines) dlt, not plt.

(2) (A2,parallel lines) plt.

Remark 15.5. Let (X,B) be a projective dlt pair. It is not hard to show: running MMP on (X,B) preserves
the dlt condition. One of the most convenient settings for running MMP is when (X,B) is Q-factorial dlt.

15.1 Adjunction for dlt pairs

Let (X,B) be a dlt pair, S a component of ⌊B⌋. We know that S is normal. There is an adjunction formula:

(KX +B)|S = KS +BS

for some uniquely determined boundary divisor BS .
Explanation: take a log resolution φ : W → X, and write KW +BW = φ(KX +B). Assume T ⊆W is

the birational transform of S. We have an adjunction formula

(KW +BW )|T = (KW + T +BW − T )|T = KT + (BW − T )|S = KT +BT .

Now let BS = ψ∗BT where ψ denotes T → S.
Fact: BS ≥ 0. This can be reduced to the case when dimX = 2.
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Lemma 15.6. Let X be a normal projective variety, D,D′ Q-Cartier divisors on X. Let f : X → Z be a
D-flipping and D′-flipping contraction. Then the flip for D exists if and only if the flip for D′ exists.

Proof. Let R be the extremal ray corresponding to X → Z. Then D · R < 0 and D′ · R < 0. There exists
some e > 0 such that (D − eD′) ·R = 0. By the cone and contraction Theorem 11.1,

D − eD′ ∼Q f
∗L

for some Q-Cartier divisor L on Z. Assume the D-flip exists:

D,X
φ

//

f
!!

X+, D+

f+

{{
Z

where D+ = φ∗D. Let D′+ = φ∗D
′. Then

D+ − eD′+ ∼Q (f+)∗L.

Since D+ is ample over Z, D′+ is ample over Z. So the above is also the flip for D′. Similarly, if the D′-flip
exists, then the D-flip exists.

Definition 15.7 (pl-flipping contractions). Let (X,B) be a Q-factorial dlt pair, projective. Let f : X → Z

be a KX +B flipping contraction (−(KX +B) ample over Z). We say f is a pl-flipping contraction if there
exists a component S of ⌊B⌋ such that −S is ample over Z. If the flip exists, we say it is a pl-flip.

Remark 15.8. One of the key insights of Shokurov has been to reduce existence of pl-flips of klt pairs to
existence of pl-flips. Hopefully we see this in the next semester.

15.2 Reduction of existence of pl-flips to lower dimension

Assume (X,B) is Q-factorial dlt, projective, and f : X → Z is a pl-flipping contraction. The goal is to show
the corresponding pl-flip exists. We sketch an approach of Shokurov (with input from Hacom-McKernan) to
reduce the problem to statements in lower dimension.

Step 1. The problem is local over Z, so can assume Z = SpecA is affine. By Lemma 15.6, enough to show
the S-flip exists. By Theorem 14.6, it is enough to show that

R(S/Z) =
⊕
m≥0

H0(X,mS)

is a finitely generated A-algebra. Also can assume ⌊B⌋ = S.
Step 2. Since f : X → Z is a small contraction, can find

D ∼ S, S ̸⊆ SuppD.

To see this use the fact that Z is affine so OZ(f∗S) is generated by global sections. Then R(S/Z) is a finitely
generated A-algebra if and only if R(D/Z) is a finitely generated A-algebra. Note since D ∼ S, there exists
a rational function τ ∈ k(X) such that

D +Div(τ) = S.
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Then τ ∈ R(D/Z) of degree one.
Step 3. For each m ≥ 0, we have an exact sequence

0 −→ OX(mD − S) −→ OX(mD) −→ Fm −→ 0

for some sheaf Fm supported on S. In general, Fm may not be equal to OS(mD|S). We get exact sequence

0 −→ H0(X,mD − S) −→ H0(X,mD) −→ H0(S, ,Fm)

and
0 −→ H0(X,mD − S) −→ H0(X,mD) −→ H0(X,mD)|S −→ 0.

Taking direct sum gives an exact sequence

0 //
⊕

m≥0H
0(X,mD − S) //

⊕
m≥0H

0(X,mD) //
⊕

m≥0H
0(X,mD)|S // 0

R(D/Z) θ // R(D/Z)|S // 0

for a certain algebra R(D/Z)|S on S which is simply the image of R(D/Z).
Step 4. Assume α ∈ Ker θ of degree m. Then Div(α) +mD − S ≥ 0. So

Div(α) + (m− 1)D +D − S = Div(α) + (m− 1)D +Div(
1

τ
)

= Div(
α

τ
) + (m− 1)D ≥ 0.

Hence β := α
τ ∈ R(D/Z) of degree m − 1. Then α = βτ . Thus α ∈ ⟨τ⟩, which is an ideal in R(D/Z)

generated by τ . Therefore,
Ker θ = ⟨τ⟩,

as τ ∈ Ker θ because τ vanishes on S, by our choice of τ .
Step 5. We show that R(D/Z) is a finitely generated A-algebra if and only if R(D/Z)|S is a finitely

generated A-algebra.
( =⇒ ) Obvious.
( ⇐= ) Say R(D)|S is generated by θ(α1), . . . , θ(αr), where αi are homogeneous elements of R(D/Z).

Pick α ∈ R(D/Z) homogeneous of degree m. Can write α = α′ + α′′ whereα′ generated by α1, . . . , αr,

α′′ ∈ Ker θ.

Then α′′ = βτ for some β of degree m− 1. Repeating the argument with β in place of α shows that α belongs
to an algebra generated by α1, . . . , αr, τ . Therefore, R(D/Z) is generated by α1, . . . , αr, τ .

Step 6. By the cone and contraction Theorem 11.1,

ID ∼ J(KX +B)

over Z with ID and J(KX + B) Cartier for some I, J ∈ N. Shrinking Z, can assume ID ∼ J(KX + B).
Then, R(D/Z)|S is a finitely generated A-algebra if and only if R(ID/Z)|S is a finitely generated A-algebra
if and only if R(J(KX +B)/Z)|S is a finitely generated A-algebra. By adjunction we have

(KX +B)|S = KS +BS
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for some BS ≥ 0. Since (X,B) is plt, (S,BS) is klt. Also can assume S ̸⊆ Supp(KX +B). Now

R(J(KX +B)/Z)|S ⊆ R(J(KS +BS)/Z).

If equality holds, then we use induction as we can assume R(J(KX +BS)/Z) is finitely generated. But in
general equality may not hold.

Step 7. The ideas is to work on a higher resolution. Assume φ : W → X is a log resolution. Let ∆W = B≥0
W .

Then
KW +∆W = φ∗(KX +B) + E

where E ≥ 0 is φ-exceptional, ∆W , E have no common components. Then R(J(KW +∆W )/Z) = R(J(KX +

B)/Z). Let T be the birational transform of S, and ψ the morphism T → S. Then

ψ∗R(J(KW +∆W )/Z)|T = R(J(KX +B)/Z)|S .

So enough to show R(J(KW +∆W )/Z)|T is finitely generated.
Step 8. Define KT +∆T = (KW +∆W )|T by adjunction. Replacing W by taking some blowups we can

assume (T,∆T ) is “terminal”, i.e., for any resolution λ : U → T , writing KU +BU = λ∗(KT +BT ), coefficients
of exceptional components of BU are negative.

Moreover, making some slight changes to B,∆W , can assume ∆W = ∆′
W +HW where∆′

W ≥ 0, ⌊∆′
W ⌋ = T,

HW ≥ 0 is ample.

We are thus in the situation to apply the followings, perhaps after replacing J with a multiple.

Theorem 15.9 (Extension theorem). Assuming existence of minimal model, etc. in lower dimension (to be
discussed later in next semester),

R(J(KW +∆W )/Z)|T = R(J(KT + ΛT )/Z)

for some boundary ΛT ≤ ∆T .

Actually, ΛT is determined as follows. For each m > 0, let

Fm! = Fix|m!(KW +∆W )|T .

Note that Fm! is the largest divisor such that Fm! ≤M |T , for any 0 ≤M ∼ m!(KW +∆W ) and T ̸⊆ SuppM .
Put F = limm→∞ Fm!. Then ΛT = ∆T − (∆T ∧ F ) where ∆T ∧ F is the largest divisor such that∆T ∧ F ≤ ∆T ,

∆T ∧ F ≤ F.

Reference for the extension theorem: [Hacom-McKernan, Existence of minimal models for varieties of log
general type II].
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