
SMOOTH PROJECTIVE SURFACES WITH PSEUDO-EFFECTIVE TANGENT
BUNDLES

JIA JIA, YONGNAM LEE, AND GUOLEI ZHONG

Abstract. Let S be a non-uniruled (i.e., non-birationally ruled) smooth projective surface. We show
that the tangent bundle TS is pseudo-effective if and only if the canonical divisor KS is nef and the
second Chern class vanishes, i.e., c2(S) = 0. Moreover, we study the blow-up of a non-rational ruled
surface with pseudo-effective tangent bundle.

1. Introduction

We work over the field C of complex numbers. A smooth projective variety comes naturally equipped
with the tangent bundle, which is the dual of its sheaf of Kähler differentials, and the related properties of
such objects can be applied to classify algebraic varieties. A well-known theorem of Mori [Mor79] asserts
that if the tangent bundle of a smooth projective variety is ample, then it is a projective space, which
gives a solution to Hartshorne’s conjecture. Since then, the study of smooth projective varieties whose
tangent bundles admit some positivity properties has attracted a lot of attention and such properties are
usually expected to impose strong restrictions on the geometry of the underlying varieties.

Definition 1.1. Let X be a smooth projective variety. Given a vector bundle E on X, we denote
by P(E) the Grothendieck projectivisation of E with OP(E)(1) denoting the relative hyperplane section
bundle. Recall that E is ample (resp. nef, big, pseudo-effective) if OP(E)(1) is ample (resp. nef, big,
pseudo-effective) on P(E).

Following the program of Campana and Peternell, a smooth Fano variety with nef tangent bundle
is conjectured to be a rational homogeneous space, and this conjecture has been intensively studied
(cf. [CP91, DPS94, MnOSC+15, Kan17]). Starting from this aspect, it is natural to classify smooth
projective varieties with other positivity properties, e.g., with big or pseudo-effective tangent bundles.
In the past few years, there are many beautiful results in this direction, especially when X is a Fano
manifold, i.e., the anti-canonical divisor −KX is ample. For example, Höring, Liu and Shao showed in
[HLS22, Theorem 1.2] that the tangent bundle of a smooth del Pezzo surface (i.e., a Fano surface) of
degree d := K2

X is big (resp. pseudo-effective) if and only if d ≥ 5 (resp. d ≥ 4). We refer readers to
[Hsi15, Sha20, Mal21, FL22, HL22, HLS22, KKL22, Kim22, Liu22] and the references therein for more
information involving projective manifolds with big tangent bundles.

As smooth projective varieties with big tangent bundles are known to be uniruled (cf. [Miy87b, Corol-
lary 8.6] and [Mal21, Proposition 7.1]), one may ask if there exist many non-uniruled projective varieties
sitting in the “boundary”, i.e., admitting a pseudo-effective but non-big tangent bundle. Apart from the
trivial example of abelian varieties, a product of an abelian variety and any smooth projective variety
becomes another example coming to our mind (cf. Lemma 2.5). To the best knowledge of ourselves, up
to a finite étale cover, there seems no more other example which has been explored before. Therefore,
we propose the following question to study whether such varieties of product type are basically the only
possibilities.

Question 1.2. Let X be a non-uniruled smooth projective variety. Are the following assertions equiva-
lent?
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(1) The tangent bundle TX is pseudo-effective;
(2) The top Chern class ctop(X) vanishes, and the augmented irregularity q◦(X) does not vanish.

Here, the augmented irregularity q◦(X) of a smooth projective variety X is defined to be the supremum
of q(X ′) := h1(X ′,OX′) where X ′ → X runs over all the finite étale covers of X (cf. [NZ09, Definition 4.1];
see Remark 1.5). Note that the top Chern class of a product variety X = Y × Z satisfies ctop(X) =

ctop(Y )×ctop(Z). Hence, by a theorem of Lieberman [Lie78], if a non-uniruled smooth projective variety
admits a global holomorphic vector field, then up to a finite étale cover, it will split into a product of
an abelian variety and a projective variety admitting no global holomorphic vector field, in which case,
the implication (1) ⇒ (2) in Question 1.2 follows. However, in general, the pseudo-effectiveness does not
necessarily imply the existence of any global sections of the tangent bundle; indeed, it is even not clear
to us about the non-vanishing H0(X, Symm TX) ̸= 0 for some m-th symmetric power.

We also note that, different from the ampleness and the nefness of a line bundle, there is a lack of
numerical characterisations on the bigness or pseudo-effectiveness, which makes our investigation a bit
more difficult (cf. Remark 1.7).

The main result of our paper is to give a positive answer to Question 1.2 in dimension 2:

Theorem 1.3. Let S be a non-uniruled (i.e., non-birationally ruled) smooth projective surface. Then
the following assertions are equivalent.
(1) The tangent bundle TS is pseudo-effective;
(2) S is minimal and the second Chern class vanishes, i.e., c2(S) = 0.
Moreover, if one of the above equivalent conditions holds, then the Kodaira dimension κ(P(TS),O(1)) =

1− κ(S) ∈ {0, 1}, and there is a finite étale cover S′ → S such that S′ is either an abelian surface or a
product E × F where E is an elliptic curve and F is a smooth curve of genus ≥ 2.

From Theorem 1.3, the pseudo-effectiveness of the tangent bundle forces the surface to be minimal,
i.e., the canonical divisor is nef. However, this is no longer true in the higher dimensional case (cf. Ex-
ample 2.6). Besides, as the second Chern class of a smooth projective surface of general type is always
positive (cf. [BHPVdV04, VII, (2.4) Proposition]), our result excludes the possibility of a general type
surface having pseudo-effective tangent bundle; see Proposition 3.3 and Remark 3.4 for the case of higher
dimensional varieties. As a consequence of Theorem 1.3, we obtain the following corollary.

Corollary 1.4. Let S be a non-uniruled smooth projective surface. If the tangent bundle TS is pseudo-
effective, then there is some integer m such that H0(S, Symm TS) ̸= 0; in particular, the tautological line
bundle of P(TS) is Q-linearly equivalent to an effective divisor.

Before moving to the second part of this section, we give one remark as kindly pointed out by Höring.

Remark 1.5. Different from Theorem 1.3 in the surface case, the implication (2) ⇒ (1) in Question 1.2
would have a negative answer in dimX ≥ 3 if we drop the assumption on the non-vanishing of the
augmented irregularity. Indeed, there do exist a few smooth (strict) Calabi-Yau threefolds which have
the vanishing top Chern classes (cf. [KS00, Fig 1]). On the other hand, as proved in [HP19, Theorem 1.6]
(cf. [Dru18, Corollary 6.5]), the tangent bundle of a (strict) Calabi-Yau manifold is never pseudo-effective.

Kim proved in [Kim22] that a projective bundle PC(E) over a smooth curve C has a big tangent bundle
if and only if either C ∼= P1 or E is not semi-stable. Indeed, as kindly pointed out by Kim, according to
the proof of [Kim22], any projective bundle (of arbitrary rank) over a smooth projective curve always has
a pseudo-effective tangent bundle; see Proposition 6.1. We slightly summarise this result in Section 6.

In terms of the non-rational ruled surface, by analysing the position of a single blow-up, we show
the following proposition. In particular, compared with the non-uniruled surfaces, there does exist a
non-relatively-minimal non-rational uniruled surface with pseudo-effective but non-big tangent bundle.

Proposition 1.6. Let f : S = PC(E) → C be a P1-bundle over a smooth curve C with the genus g(C) ≥ 1.
Suppose the tangent bundle TS is pseudo-effective but not big. Then the blow-up of S along a point p has
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a pseudo-effective tangent bundle if and only if there exist some positive integer m and some line bundle
L which is numerically equivalent to the relative tangent bundle TS/C such that H0(S,mm

p ⊗ L⊗m) ̸= 0,
where mp is the maximal ideal of the local ring OS,p.

Making Proposition 1.6 as an initial point, we would like to give a rather clean description of non-
rational uniruled projective surfaces admitting pseudo-effective but non-big tangent bundles.

We summarise the organisation of our paper. In Section 2, we prepare some preliminary results for
the convenience of later use. In Section 3, we prove our Theorem 1.3 for the cases κ(S) = 0 and 2. In
Section 4, we study the case κ(S) = 1 when S is minimal, and the minimality of such S with pseudo-
effective tangent bundle will be shown in Section 5. Finally, we prove Proposition 1.6 in Section 6.

Let us end up the introduction with the following remark.

Remark 1.7 (Comparison with previous papers). In [Mat22, Theorem 1.1] (cf. [HIM22]), Matsumura
nicely establishes the minimal model program of a projective klt variety with strongly pseudo-effective
(reflexive) tangent sheaf and ends up with a quasi-étale quotient of an abelian variety. Here, a vector
bundle E on a smooth projective variety X is said to be strongly pseudo-effective if OP(E)(1) is pseudo-
effective and the restricted base locus does not dominate X (cf. [BDPP13, Definition 7.1]). Since our
assumption is weaker than the assumption in [Mat22], even in the surface case, we could not expect to
obtain a similar result like [Mat22, Theorem 1.1]. The main reason is that, when running the minimal
model program, although our (weak) pseudo-effectiveness of the tangent bundle descends along any
birational contraction or flips (cf. Lemma 2.5), it could not be preserved under a Fano contraction any
more (see [Kim22] and Proposition 1.6; cf. [Mat22, Proposition 3.2]).

Acknowledgements. We would like to thank Professor Andreas Höring and Doctor Jeong-Seop Kim
for the valuable comments and suggestions. The first author is supported by a President’s Graduate
Scholarship from NUS. The second and the third authors are supported by the Institute for Basic
Science (IBS-R032-D1-2022-a00).

2. Preliminary

First of all, we fix the following notation throughout the paper.

Notation 2.1. Let X be a projective variety.
(1) The symbol ∼ (resp. ∼Q, ≡) denotes the linear equivalence (resp. Q-linear equivalence, numerical

equivalence) on Cartier divisors (resp. Q-Cartier divisors). Let f : X → Y be a morphism of projective
varieties. We denote by ∼f the relative (or f -) linear equivalence of Cartier divisors, i.e., for two
Cartier divisors D1 and D2 on X, D1 ∼f D2 if and only if there is some Cartier divisor E on Y such
that D1 −D2 ∼ f∗E.

(2) Denote by NS(X) the Néron-Severi group of X. Let N1(X) := NS(X) ⊗Z R be the space of R-
Cartier divisors modulo numerical equivalence and ρ(X) := dimR N1(X) the Picard number of X.
Let N1(X) be the dual space of N1(X) consisting of 1-cycles. Denote by Nef(X) (resp. PE(X)) the
cone of nef divisors (resp. pseudo-effective divisors) in N1(X) and NE(X) the dual cone consisting
of pseudo-effective 1-cycles in N1(X). In particular, when X is a smooth projective surface, we have
N1(X) = N1(X) and NE(X) = PE(X).

(3) For a smooth projective variety X, we denote by KX the canonical divisor and κ(X) = κ(X,KX)

the Kodaira dimension of X.
(4) Let f : X → C be a surjective morphism between normal projective varieties. We say that f is a

fibration if f∗OX = OC or equivalently, the general fibre of f is connected. A fibration is said to
be isotrivial if all the smooth fibres are isomorphic to each other; otherwise, we say that it is non-
isotrivial. We say that f is trivial if there exist another projective variety F and an isomorphism
X ∼= F × C such that f is the natural projection. We say that f is locally trivial (or a fibre bundle)
if each point c ∈ C is contained in a small open neighbourhood U having the property that f−1(U)

is trivial over U . See Notation 2.2 for a more detailed description on surface fibrations.
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(5) Let H be a nef and big divisor on X. Let F be a torsion free coherent sheaf on X. The slope of F
with respect to H is defined to be the rational number

µH(F) :=
c1(F) ·Hdim(X)−1

rank(F)

where c1 is the first Chern class. A torsion free coherent sheaf E is said to be µ-semi-stable if for any
non-zero subsheaf F ⊆ E , the slopes satisfy the inequality µH(F) ≤ µH(E).

Next, we recall and develop some basic properties on the fibration of surfaces. Most of them come
from [Ser96, Section 3] and [HP20, Section 5].

Notation 2.2 (Surface fibration).
(1) Let S be a smooth projective surface and f : S → C a fibration with F a general fibre of f .
(2) For a closed point c ∈ C, we denote by Sc its fibre over c.
(3) Let W := P(TS) be the Grothendieck projectivisation of the tangent bundle of S with π : W → S

the natural projection, and let ξ := OW (1) be the corresponding tautological class.
(4) Let {νiEi}i∈I be the set of all components of non-multiple fibres of f , where the νi’s denote their

corresponding multiplicities within their fibres. Let {mjFj}j∈J be the set of multiple fibres of f .
Clearly, for each j ∈ J and c ∈ C, we have mjFj ≡

∑
i∈I,f(Ei)=c νiEi ≡ F .

(5) Let

E = ES :=
∑
c∈C

f∗c− (f∗c)red =
∑
i∈I

(νi − 1)Ei +
∑
j∈J

(mj − 1)Fj = E0 +
∑
j∈J

(mj − 1)Fj

where E0 :=
∑

i∈I(νi − 1)Ei comes from the non-multiple non-reduced fibres. This decomposition is
indeed the Zariski decomposition where

∑
j∈J(mj − 1)Fj is the nef part and E0 is the fixed part.

(6) Applying [Ser96, Section 3], we have an exact sequence

0 −→ TS/C −→ TS −→ f∗TC −→ F −→ 0,

where TS , TC are the tangent bundles of S and C respectively, F is a torsion sheaf and TS/C := Ω∨
S/C is

the relative tangent sheaf of f , which is locally free. Let JS/C be the torsion-free image of TS → f∗TC .
(7) By [Ser96, (3.0.3) and Proposition 3.1], we have

JS/C = J∨∨
S/C ⊗ IΓ = K−1

S ⊗ T−1
S/C ⊗ IΓ

where IΓ is an ideal sheaf and the support of Γ consists of points s ∈ S such that the reduced
structure f−1(f(s))red is singular at s. In addition, we have TS/C = −KS + f∗KC + E where E is
defined in (5). In particular, we have the following short exact sequence

(†) 0 −→ TS/C −→ TS −→ (−f∗KC − E)⊗ IΓ −→ 0.

(8) Let Y := PS((−f∗KC − E) ⊗ IΓ) ∼= PS(IΓ) ⊆ W which is a prime divisor on W . Note that Y is
isomorphic to the blow-up of S along the ideal sheaf IΓ since Γ is locally generated by a regular
sequence (cf. [Ser96, Proposition 3.1 (iii)] and [HP20, § 3.10]). However, since the length(OΓ,s) at
each point s ∈ Γ is not necessarily 1, such Y in general is not necessarily smooth.

(9) Denote by Exc(π|Y ) the exceptional divisor of π|Y . By the short exact sequence (†) and [Har77,
Chapter II, Lemma 7.9 and Proposition 7.13], we have ξ|Y = OW (1)|Y = OY (1) where

OY (1) = OY (−Exc(π|Y ))⊗ (π|Y )∗(−f∗KC − E).

Moreover, from [BHPVdV04, IV, (10.5) Lemma] and its proof, we know that ξ − Y ∼ π∗TS/C and
(π|Y )∗OY (1) = (−f∗KC − E)⊗ IΓ.

Now, we recall Maruyama’s elementary transformation which will be heavily used in our proofs.

Notation 2.3 (Elementary transformation for projective bundles over surface blow-ups).
(1) Let h : S2 → S1 be a blow-up between smooth projective surfaces with the exceptional (−1)-curve

i : D ↪→ S2. Let ξi be the tautological divisor of the projective bundle P(TSi) and πi : P(TSi) → Si

the natural projection.
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(2) There is a natural short exact sequence

0 −→ TS2 −→ h∗TS1 −→ i∗TD(D) −→ 0.

Here, TD(D) ≃ OD(1) and D̃ := PD(TD(D)) is a projective subbundle of D′ := π̃1
∗
D = PD(h∗TS1)

defined by the restriction of the following exact sequence

0 → K = OD(−1) → h∗TS1 |D → OD(1) → 0,

where the kernel K = det(h∗TS1 |D)⊗OD(1)∨ = OD(−1) by the projection formula.
(3) Applying Maruyama’s elementary transformation (cf. [Mar82, Theorem 1.4 and (1.7)]), we have the

following commutative diagram, where β is the blow-up of P(h∗TS1
) along D̃ and α is the blow-down

of BlD̃(P(h∗TS1)) along the β-strict transform of D′ = π̃1
∗
D.

BlD̃(P(h∗TS1
))

β

wwooo
ooo

ooo
oo

α

''NN
NNN

NNN
NNN

P(TS1
)

π1

��

P(h∗TS1
) //____________

π̃1

��

h̃oo P(TS2
)

π2

��

S1 S2
hoo S2

(4) By [Mar82, Theorem 1.4 and (1.7)], we have β∗h̃∗ξ1 ∼ α∗ξ2+G where G is the β-exceptional divisor.
(5) The β-blown-up section D̃ satisfies D̃ ∼ c0 + e in D′ where c0 = h̃∗ξ1|D′ is a tautological divisor of

D′ → D and e is a fibre (cf. [Har77, Chapter V, Proposition 2.6]). In particular, D̃ ̸⊆ h̃∗Y1 for any
section Y1 ∈ |ξ1| by the above linear equivalence.

In what follows, we collect several results to be used in the subsequent sections.

Lemma 2.4 ([HLS22, Lemma 2.2]; cf. [Dru18, Lemma 2.7]). Let X be a projective variety, E a vector
bundle on X, and H a big Q-Cartier Q-divisor on X. Then E is pseudo-effective if and only if for all
c > 0 there exist sufficiently divisible integers i, j ∈ N such that i > cj and

H0(X, Symi E ⊗ OX(jH)) ̸= 0.

Lemma 2.5. Let E ⊆ F be an injection between two vector bundles over a projective variety X. If E is
pseudo-effective, then so is F .

Proof. Fix a big Q-Cartier Q-divisor H on X. By Lemma 2.4, we only need to show for all c > 0, there
exist sufficiently divisible integers i, j ∈ N such that i > cj and

H0(X, Symi F ⊗OX(jH)) ̸= 0.

This follows from the injection Symi E ⊆ Symi F and the pseudo-effectiveness of E (cf. Lemma 2.4). □

As a consequence of the above lemma, a typical difference between nefness and pseudo-effectiveness
is that the quotient bundle of a pseudo-effective vector bundle is not pseudo-effective any more. For
example, a rank two vector bundle E = O ⊕ O(−1) over a smooth rational curve is pseudo-effective by
Lemma 2.5 while its quotient O(−1) is not (cf. [Mat22, Proposition 3.4]).

The following example shows that we could not expect the variety equipped with pseudo-effective
tangent bundle to be minimal in the higher dimensional case.

Example 2.6. Let X := E×S be a product of an elliptic curve E and a non-minimal smooth projective
surface S which contains some (−1)-curve. Let p : X → E be the natural projection. Applying Lemma 2.5
and considering the natural injection 0 → p∗OE → TX , we see that TX is pseudo-effective. However, it
is clear that KX is not nef.

Lemma 2.7 (cf. [HLS22, Corollary 2.4]). Let π : X ′ → X be a birational morphism between smooth
projective varieties. If the tangent bundle TX′ is pseudo-effective, then so is TX .
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We end up this section with the following lemma, which will be used to confirm the existence of
sections of some symmetric power SymmTS in Theorem 1.3 by taking an étale base change.

Lemma 2.8 (cf. [Uen75, Theorem 5.13]). Let f : X → Y be a surjective morphism of projective varieties
and D a Cartier divisor on Y . Then κ(Y,D) = κ(X, f∗D).

3. The case κ(S) = 0 or 2

In this section, we prove Theorem 1.3 when the Kodaira dimension κ(S) = 0 or 2. Let us begin with
the minimal surface of Kodaira dimension zero.

Lemma 3.1. Let S be a smooth minimal projective surface with κ(S) = 0. Then the tangent bundle TS

is pseudo-effective if and only if S is a Q-abelian surface (and thus the second Chern class c2(S) = 0),
i.e., S is a finite étale quotient of an abelian surface. In this case, κ(P(TS),O(1)) = 1.

Proof. From the abundance, we know that KS ≡ 0. Applying [BHPVdV04, VI, Table 10] to S, we see
that S has to be one of the following: an Enriques surface, a bi-elliptic surface, a K3 surface or an
abelian surface. Since the tangent bundles of Enriques surfaces and K3 surfaces are not pseudo-effective
(cf. [Nak04, Chapter VI, Theorem 4.15], or more generally, [HP19, Theorem 1.6]), our S is covered by
an abelian surface. Conversely, for a finite étale morphism π : A → S from an abelian surface A, we
have π∗TS = TA = O⊕2

A . Then TS is pseudo-effective (and even nef), noting that there is an induced
étale morphism π̃ : P(π∗TS = TA) → P(TS) such that π̃∗OP(TS)(1) = OP(TA)(1) is effective; in particular,
OP(TS)(1) and hence TS are pseudo-effective (cf. e.g. [Nak04, Chapter II, Lemma 5.6]). So the first half
our lemma is proved. The second half of our lemma follows immediately from Lemma 2.8 and the fact
that h0(A, Symm TA) = m+ 1 for each positive integer m. □

Now we show the minimality of a smooth projective surface which is of Kodaira dimension zero and
has pseudo-effective tangent bundle.

Proposition 3.2. Let S be a smooth projective surface of κ(S) = 0. If TS is pseudo-effective, then KS

is nef, i.e., S is minimal; in particular, S is an étale quotient of an abelian surface.

Proof. In the view of Lemma 2.7, we only need to exclude the case when S := S2 is a blow-up of a
smooth minimal surface S1 with KS1 ≡ 0. Suppose to the contrary that the tangent bundle TS2 is
pseudo-effective. By Lemma 3.1, there is an étale cover S′

1 → S1 from an abelian surface S′
1. Let

S′
2 := S′

1 ×S1
S2 be the fibre product, which is also a smooth projective surface with κ(S′

2) = 0. Note
that TS′

2
(as the pullback of TS2

) is also pseudo-effective. Replacing Si with S′
i, we may assume that S1

is an abelian surface and thus TS1
≃ O⊕2

S1
.

Let us consider the elementary transformation in Notation 2.3 and use the notation therein. Note
that the tautological divisors ξ1 and h̃∗ξ1 can be taken as irreducible horizontal sections Y1 and Ỹ1,
and both of them are nef. Note also that Y1|Y1

≡ 0 and Ỹ1|Ỹ1
≡ 0, since Y1 (resp. Ỹ1) is a fibre of

P(TS1
) ∼= S1 × P1 → P1 (resp. P(h∗TS1

) ∼= S2 × P1 → P1). Moreover, ξ2 is pseudo-effective if and only if
so is α∗ξ2 = β∗h̃∗ξ1−G (cf. e.g. [Nak04, Chapter II, Lemma 5.6]). On the other hand, since β∗h̃∗ξ1−G is
pseudo-effective and h̃∗ξ1 is nef, by taking a sufficiently ample divisor A on P(h∗TS1) such that β∗A−G

is ample (cf. [KM98, Proposition 1.45]), we have

0 ≤ (β∗h̃∗ξ1 −G) · (β∗A−G) · β∗h̃∗ξ1

= (β∗h̃∗ξ1 · β∗A− β∗h̃∗ξ1 ·G−G · β∗A+G2) · β∗h̃∗ξ1

= G2 · β∗h̃∗ξ1 = β∗(G|G) · h̃∗ξ1.

Recall that G → D̃ is a ruled surface and G|G ∼β OG(1) ∼β −C0 where C0 is some horizontal section,
noting that G|G may contain some β-fibre component. In particular, G2 · β∗h̃∗ξ1 = −h̃∗ξ1 · D̃ = −1 < 0

(cf. Notation 2.3), which gives us the desired contradiction. The second half follows from Lemma 3.1. □
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In the higher dimensional case, applying the Beauville-Bogomolov decomposition, we can easily see
that for a projective manifold X with KX ≡ 0, the tangent bundle TX is pseudo-effective if and only if
the augmented irregularity q◦(X) > 0 (cf. Question 1.2). However, the minimality is not preserved any
longer as we observed in Example 2.6.

In the second part of this section, we deal with the case when the variety is of general type.

Proposition 3.3. Let S be a smooth projective surface of general type. Then TS is not pseudo-effective.

Proof. By Lemma 2.7, we only need to exclude the case when S is minimal (and hence KS is nef)
and has pseudo-effective tangent bundle. By the semi-stability of the cotangent bundle ΩS (cf. [Bog79,
Section 13.1]), the tangent bundle TS is also semi-stable with respect to KS (cf. [Eno87, Corollary 1.2]).
We claim that

H0(S, Symi TS ⊗OS(jKS)) = 0,

for any i > 2j. Suppose the claim for the time being. Then it follows from Lemma 2.4 that TS is not
pseudo-effective which concludes our proposition.

To prove the claim, suppose to the contrary that H0(S, Symi TS ⊗OS(jKS)) ̸= 0 for some i > 2j. Fix
a non-zero section s of Symi TS ⊗OS(jKS) which defines an injection 0 → OS → Symi TS ⊗OS(jKS).
On the other hand, we have

c1(Sym
i TS ⊗OS(jKS)) = c1(Sym

i TS) + rank(Symi TS) · c1(OS(jKS))

=
i(i+ 1)

2
· c1(TS)− (i+ 1) · j · c1(TS)

= (i+ 1) ·
(
i

2
− j

)
c1(S)

and hence c1(Sym
i TS ⊗OS(jKS)) · c1(KS) < 0. This contradicts the semi-stability of TS and our claim

is thus proved. □

Indeed, with the same argument as above, we obtain the following result in higher dimensional cases.

Remark 3.4. Let X be a normal (Q-factorial) projective variety which is of general type and has at
worst klt singularities. We shall show that the reflexive tangent sheaf TX := Ω∨

X is not pseudo-effective
in the sense of [HP20, Definition 3.5]. In the view of [HP20, Corollary 4.3] and Lemma 2.4, after running
the special minimal model program with scaling (cf. [BCHM10]), we may assume that X is minimal,
i.e., KX is nef and big. By the semi-stability of the tangent sheaf TX with respect to KX (cf. [Eno87,
Corollary 1.2]), we have

H0(X, Sym[i] TX ⊗OX(jKX)) = 0,

for i > dj, where d := dim(X) and Sym[i] TX is the reflexive hull of the symmetric power. By [HP20,
Definition 3.5] and a similar calculation as in Proposition 3.3, TX is not pseudo-effective. Consequently,
the tangent bundle of any hyperbolic smooth projective variety is never pseudo-effective.

4. Relatively minimal elliptic fibration, the case κ(S) = 1

In this section, we study Theorem 1.3 for the case κ(S) = 1. With the further assumption that S is
minimal, we obtain the following theorem as our main result of this section.

Theorem 4.1. Let f : S → C be a relatively minimal elliptic fibration from a smooth projective surface
S of Kodaira dimension κ(S) = 1. Then the following assertions are equivalent.
(1) The tangent bundle TS is pseudo-effective;
(2) The second Chern class vanishes, i.e., c2(S) = 0;
(3) f is almost smooth, i.e., the only singular fibres are multiples of smooth elliptic curves.

We stick to Notation 2.2 and the following additional notation throughout this section.

Notation 4.2.
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(1) We use the same notation as in Notation 2.2. In addition, S is further assumed to be a smooth
projective surface of Kodaira dimension κ(S) = 1 and f is a relatively minimal elliptic fibration, i.e.,
free of (−1)-curves among the fibres of f . In fact, such S is a minimal surface, i.e., KS is nef and
c1(S)

2 = 0; see Lemma 4.3.
(2) For each point c ∈ C, we define the normalised fibre S̃c over c as follows

S̃c :=
1

12

∑
j∈J,f(Fj)=c

e(Fj)mjFj +
∑

i∈I,f(Ei)=c

(
1−

(
1− 1

12
e(Sf(Ei))

)
νi

)
Ei,

where e(`) is the Euler number of a curve `. It is clear that if Sc is a multiple of a smooth elliptic
curve, then the normalised multiple fibre will vanish since e(Sc) = 0 in this case. We shall see in
Lemma 4.6 that all of the normalised fibre S̃c are Q-effective (cf. Remark 4.9 for a more detailed
description).

(3) By the canonical bundle formula for relatively minimal elliptic fibrations [BHPVdV04, V, (12.1) The-
orem], we have

ωS = f∗(ωC ⊗ (R1f∗OS)
∨)⊗OS

(∑
j

(mj − 1)Fj

)
,

where deg(R1f∗OS)
∨ = χ(OS) (cf. [BHPVdV04, V, (12.2) Proposition]). By Noether’s formula,

χ(OS) = c2(S)/12, noting that c1(S)
2 = 0.

(4) For the relatively minimal elliptic fibration f : S → C, recall the following invariant (cf. [BHPVdV04,
V, (12.5) Proposition])

δ(f) := χ(OS) + (2g(C)− 2 +
∑
j∈J

(1−m−1
j )).

Then κ(S) = 1 is equivalent to δ(f) > 0.

Lemma 4.3. Let S → C be an elliptic fibration which is relatively minimal. Suppose that κ(S) ≥ 0.
Then S is minimal, i.e., the canonical divisor KS is nef.

Proof. Note that κ(S) ≤ 1 since S → C is an elliptic fibration. Let Sm be the minimal model of S. By
Notation 4.2 (3), we know that K2

S = 0. If S → S1 contracts some (−1)-curve, then K2
S1

> 0. Inductively,
K2

Sm
> 0 and thus KSm

is nef and big, a contradiction to κ(S) ≤ 1. □

We recall the following lemma for the convenience of later proofs.

Lemma 4.4 ([BHPVdV04, III, (18.2) Theorem and V, (12.1) Theorem]). For a relatively minimal
elliptic fibration f : S → C, one has χ(S,OS) ≥ 0 with the equality holds if and only if f is isotrivial and
all the singular fibres are multiple of smooth elliptic curves (i.e., f is almost smooth).

Lemma 4.5. We have the following linear and numerical equivalences

ξ ∼ Y + π∗TS/C ≡ Y + π∗(E0 −
c2(S)

12
F ).

In particular, if c2(S) = 0, then the tangent bundle TS is pseudo-effective.

Proof. By the canonical bundle formula and Notation 2.2 (5), we have

ωS = f∗(ωC ⊗ (R1f∗OS)
∨)⊗OS

(∑
j∈J

(mj − 1)Fj

)
= f∗(ωC ⊗ (R1f∗OS)

∨)⊗OS(E − E0)

where deg((R1f∗OS)
∨) = c2(S)/12. By Notation 2.2 (5) and (7), we have TS/C ≡ E0 − c2(S)F/12.

Together with Notation 2.2 (9), our lemma is thus proved. □

In what follows, we show the normalised fibres defined in Notation 4.2 (2) are all Q-effective. We refer
readers to Remark 4.9 for a more detailed description.

Lemma 4.6. The divisor −TS/C ≡ c2(S)F/12 − E0 is pseudo-effective. In particular, the normalised
fibres defined in Notation 4.2 (2) are all Q-effective.
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Proof. Applying [BHPVdV04, III, (11.4) Proposition], we have

c2(S)

12
F − E0 =

( 1

12

∑
c∈C

e(Sc)
)
F − E0 ≡ 1

12

∑
c∈C

e(Sc)Sc −
∑
i∈I

(νi − 1)Ei

=
1

12

∑
j∈J

e(Fj)mjFj +
1

12

∑
i∈I

e(Sf(Ei))νiEi −
∑
i∈I

(νi − 1)Ei

=
1

12

∑
j∈J

e(Fj)mjFj +
∑
i∈I

(
1−

(
1− 1

12
e(Sf(Ei))

)
νi

)
Ei =

∑
c∈C

S̃c.

By the non-negativity of e(Fj) ≥ 0, we only need to verify that for each non-multiple non-reduced
singular fibre Sf(Ei) with i ∈ I, we have

1−
(
1− 1

12
e(Sf(Ei))

)
νi ≥ 0.

We refer to the Kodaira’s table [BHPVdV04, p. 201] and check case by case, noting that the Euler number
for a singular fibre of Types I∗0, I∗b , II∗, III∗ or IV∗ is 6, b+6, 10, 9 or 8, respectively, and the multiplicity
of an irreducible component in a singular fibre of Types I∗0, I∗b , II∗, III∗ or IV∗ is no more than 2, 2, 6, 4
or 3, respectively (cf. [Mir89, Table IV.3.1]). □

To prove Theorem 4.1, we first treat the case when f is non-isotrivial. The proof of the following
proposition is inspired by [HP20, Proposition 5.4].

Proposition 4.7. Suppose that f is non-isotrivial. Then the tangent bundle TS is not pseudo-effective.

Proof. Suppose to the contrary that TS is pseudo-effective. Since f is non-isotrivial, there is a non-zero
Kodaira-Spencer class which induces the following unique non-trivial extension on an elliptic curve

0 −→ OF −→ TS |F ∼= F2 −→ OF −→ 0.

Note that the above short exact sequence is the restriction of

0 −→ TS/C −→ TS −→ f∗TC −→ F −→ 0

to a general fibre F (cf. Notation 2.2). Let WF := π−1(F ) = P(TS |F ), and CF := Y ∩ WF which is
the section of π|WF

associated with the surjection TS |F → OF → 0. Since ξ is pseudo-effective, by the
divisorial Zariski decomposition (cf. [Bou04, Theorem 3.12]), we have

ξ ≡
∑

aiYi + P(1)

where Yi are finitely many prime divisors, ai > 0, and P is a modified nef R-divisor (in the sense that
P |D is pseudo-effective for every prime divisor D on W ) (cf. [Bou04, Proposition 2.4]). Restricting the
decomposition (1) to WF , we have

CF ∼ ξ|WF
≡

∑
i

aiYi|WF
+ P |WF

.

Here, we can choose sufficiently general F such that Yi ∩WF (if non-zero) are mutually distinct, noting
that some of Yi come from the pull-back of components of E on S and hence have no intersection with
WF . Since the tautological section CF is extremal in WF but P |WF

is still numerically movable by noting
that {WF }F is a free family, we have P |WF

= 0. Without loss of generality, we may assume that a1 = 1,
Y1 ∩ WF = CF and Yi ∩ WF = 0 for i ̸= 1. Now that Y1 ∩ WF = CF = Y ∩ WF for every sufficiently
general fibre F of f , we have Y1 = Y . In particular, π∗TS/C ≡ ξ−Y ≡

∑
i≥2 aiYi+P is pseudo-effective

(cf. Lemma 4.5). By Lemma 4.6 and the Zariski decomposition on the surface S, we have E0 = 0 and
hence c2(S) = 0, a contradiction to Lemma 4.4. □

In the remaining part of this section, we shall deal with the isotrivial case, which is more troublesome.
Let us first recall the following lemma.
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Lemma 4.8 (cf. e.g. [PS20, Lemma 3.2]). Let f : S → C be a relatively minimal isotrivial elliptic
fibration. Then the singular fibre of f is either a multiple of smooth elliptic curves (of Type mI0) or a
non-multiple fibre not being of Types Ib or I∗b for b ≥ 1.

Before moving into the proof of Theorem 4.1 for the isotrivial case, we do some preparations. We
give the following remark, which gives a detailed computation in terms of the normalised fibres and their
local equations.

Remark 4.9. For every point c ∈ C, one can calculate the normalised singular fibre S̃c (cf. Notation 4.2,
Lemma 4.6 and [Mir89, Table IV.3.1]) as follows.

S̃c =
∑

j∈J,f(Fj)=c

1

12
e(Fj)mjFj +

∑
i∈I,f(Ei)=c

(
1−

(
1− 1

12
e(Sf(Ei))

)
νi

)
Ei

=



1
6e1 II
1
4 (e1 + e2) III
1
3 (e1 + e2 + e3) IV
1
2 (e2 + e3 + e4 + e5) I∗0
5
6e1 +

2
3 (e2 + e9) +

1
2 (e3 + e7) +

1
3 (e4 + e8) +

1
6e5 II∗

3
4 (e1 + e8) +

1
2 (e2 + e5 + e7) +

1
4 (e3 + e6) III∗

2
3 (e1 + e3 + e5) +

1
3 (e2 + e4 + e6) IV∗

e1

I0

e1

pt

II

e1

e2
III

e1 e2

e3

IV

e2 e3 e4 e5

2e1

I∗0
2e2 6e6

4e4 2e9

e1 3e3 5e5 3e7 4e8

II∗

2e2 2e7

4e4

e1 3e3 2e5 3e6 e8

III∗

e1 e3 e5

2e2 2e4 2e6

3e7

IV∗

Figure 1. Singular fibre of an isotrivial elliptic fibration

For every point s ∈ Γ, we may use x, y as regular parameters of OS,s. The ideal sheaf of the singular
points on each fibre could be chosen as below (cf. [Ser96, Proof of Proposition 3.1]).

The following observation plays a significant role to the proof of Theorem 4.1. Once f is not almost
smooth and if we assume ξ is pseudo-effective, then the prime divisor Y would appear in the negative
part of the divisorial Zariski decomposition of ξ.

Lemma 4.10. Let f be an isotrivial fibration. If c2(S) > 0, then ξ|Y is not pseudo-effective.
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Table 1. Local equation of each fibre

type of Sc II III IV I∗0 II∗ III∗ IV∗

local equation of Sc x3 = y2 x4 = y2 x3 = y3 xνiyνj = 0

IΓ,s (x2, y) (x3, y) (x2, y2) (x, y)

Proof. By Notation 2.2 (9), ξ|Y ∼ −Exc(π|Y ) − (π|Y )∗(f∗KC + E). If the genus g = g(C) ≥ 1, then
f∗KC + E ≡ (2g − 2)F + E ≥ 0 is effective. Since F is free and (π|Y )∗E is the sum of the proper
transform and some (π|Y )-exceptional curve, it follows that (π|Y )∗(f∗KC +E) is effective. In particular,
ξ|Y is anti-pseudo-effective. Suppose that ξ|Y is pseudo-effective. Then we have ξ|Y ≡ 0, which in turn
implies g(C) = 1 and Exc(π|Y ) = 0. In other words, Γ = ∅, i.e., the reduced structure of every fibre is
smooth. This leads to a contradiction to χ(S,OS) = c2(S)/12 > 0 (cf. Lemma 4.4).

In the following, we may assume that C ≃ P1. By [HP20, Corollaries 3.13 and 3.19], ξ|Y being not
pseudo-effective is equivalent to the vanishing

H0(S, Ik
Γ ⊗OS(−k(f∗KC + E))) = H0(S, Ik

Γ ⊗OS(k(KS − f∗KC − E −KS))) = 0

for all k ∈ N. Since C ≃ P1, by the canonical bundle formula, KS − f∗KC −E ∼ c2(S)F/12−E0. Note
that KS = δ(f)F with δ(f) > 0 (cf. Notation 4.2 (4)). Since f is isotrivial, by Lemma 4.8, the only
multiple fibres are of Type mI0, and hence has Euler number zero. Then

c2(S)

12
F − E0 =

∑
i∈I

(
1−

(
1−

e(Sf(Ei))

12

)
νi

)
Ei.

Now we obtain
KS − f∗KC − E ∼Q

∑
i∈I

(
1−

(
1−

e(Sf(Ei))

12

)
νi

)
Ei =

∑
c∈D

S̃c.

Here, the set D ⊆ C consists of the point c such that the reduction of the scheme theoretic fibre Sc is
not an elliptic curve. We are left to show that for every s ∈ Γ and every k ∈ N, the local equation of
kS̃f(s) does not kill the ideal sheaf Ik

Γ,s. By Lemma 4.8, the non-multiple fibres are of Kodaira’s type II,
III, IV, I∗0, II∗, III∗ and IV∗. Now the proof is finished by Remark 4.9 and Table 1. □

Lemma 4.11. If TS is pseudo-effective and Y |Y is not pseudo-effective, then c2(S) = 0.

Proof. By Proposition 4.7, our f is isotrivial. Suppose to the contrary that c2(S) > 0. Applying
Lemmas 4.4 and 4.10, we see that ξ|Y is not pseudo-effective. By the divisorial Zariski decomposition
(cf. [Bou04, Theorem 3.12]), there exists c > 0 such that

ξ ≡ cY +
∑

aiYi + P,(2)

where ai > 0, Yi ( ̸= Y ) are prime divisors and P is a modified nef R-divisor (cf. [Bou04, Proposition 2.4]).
Suppose first that c ≥ 1. Then ξ − Y is pseudo-effective. Together with Lemma 4.6, we have ξ ≡ Y and
E0 ≡ c2(S)F which implies that c2(S) = 0, noting that E2

0 < 0 once it is non-zero (cf. [BHPVdV04, III,
(8.2) Lemma]), while F is free. Suppose now that c < 1. Then we have

(1− c)Y ≡ (ξ − cY )− π∗TS/C .

Restricting to Y itself, we have

(1− c)Y |Y ≡ (ξ − cY )|Y − π∗TS/C |Y ,

where (ξ − cY )|Y is pseudo-effective by Eq. (2). Since −TS/C is pseudo-effective (cf. Lemma 4.6), it
follows that −π∗TS/C |Y is also pseudo-effective, noting that Y is horizontal and irreducible. In particular,
(1− c)Y |Y is pseudo-effective. However, this gives rise to a contradiction to our assumption. □

In the view of Lemma 4.11, we are left to show that Y |Y is not pseudo-effective. For the convenience
of our later use, we formulate the following lemma which is a direct consequence of Zariski’s lemma.
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Lemma 4.12. Let f : S → C be a fibration from a smooth projective surface to a smooth curve. Let

Sc := f−1(c) =
∑
ic∈Ic

micEic +
∑
jc∈Jc

njcFjc

be the fibre of f over c ∈ C where Eic and Fjc are (distinct) irreducible components, and mic and njc

are the corresponding multiplicities in Sc. Then

M :=
∑
c∈D

( ∑
ic∈Ic

aicEic −
∑
jc∈Jc

bjcFjc

)
is not pseudo-effective for any non-empty finite set D ⊂ C and any rational numbers aic ≥ 0, bjc > 0

satisfying the following two conditions:

(1) there is at least one c ∈ D such that Jc ̸= ∅;
(2) for each c ∈ D, if Jc = ∅, then there exists some aic = 0 with ic ∈ Ic.

In particular, M − δF is not pseudo-effective for any rational number δ > 0 if M satisfies condition
(2), where F is a general fibre of f .

Proof. Suppose to the contrary that M is pseudo-effective. Let

M ≡ P +N = P +N0 +
∑
c∈D

∑
ic∈Ic

dicEic

be the Zariski decomposition, where P is nef, N is effective (dic ≥ 0) such that N0 and Eic ’s do not have
any common components. Then we have∑

c∈D

∑
ic∈Ic,1

a′icEic = P +N0 +
∑
c∈D

( ∑
ic∈Ic,2

d′icEic +
∑
jc∈Jc

bjcFjc

)
with aic ≥ a′ic > 0, d′ic > 0, Ic,1 ∩ Ic,2 = ∅ and Ic,1 ∪ Ic,2 ⊆ Ic for each c ∈ D. Note that there exists at
least one, say c′ ∈ D, such that Ic′,1 ̸= ∅, since the RHS is not trivial by (1). Take the intersection with∑

c∈D

∑
ic∈Ic,1

a′icEic

on both sides. Then we get the contradiction by Zariski’s lemma (cf. [BHPVdV04, III, (8.2) Lemma]):(∑
c∈D

∑
ic∈Ic,1

a′icEi,c

)2

< 0,

(
P +N0 +

∑
c∈D

( ∑
ic∈Ic,2

d′icEic +
∑
jc∈Jc

bjcFjc

))(∑
c∈D

∑
ic∈Ic,1

a′icEi,c

)
≥ 0,

noting that
∑

ic∈Ic,1
a′icEic is never a (positive) rational multiple of Sc by condition (2).

For the last assertion, note that F is numerically equivalent to any fibre Sc. It is not hard to see that
M − δF satisfies both (1) and (2) whenever M satisfies (2). □

Now we come to the last part of the proof of the isotrivial case for Theorem 4.1.

Lemma 4.13. Suppose that f is isotrivial. If c2(S) > 0, then Y |Y is not pseudo-effective.

Proof. Since Y ≡ ξ + π∗(c2(S)F/12− E0) (cf. Lemma 4.5), we need to calculate(
ξ + π∗

(c2(S)
12

F − E0

))
|Y = ξ|Y + (π|Y )∗

(c2(S)
12

F − E0

)
and show that it is not pseudo-effective on Y . Recall that Y is isomorphic to the blow-up of the ideal
sheaf IΓ. By Notation 2.2 (9), OW (1)|Y ≃ OY (1) ≃ OY (−EY ) ⊗ (π|Y )∗OS(−f∗KC − E), where EY is
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the exceptional divisor of π|Y : Y → S. In other words, ξ|Y ∼ −EY − (π|Y )∗(f∗KC + E). Therefore,

Y |Y ≡
(
ξ + π∗

(c2(S)
12

F − E0

))
|Y

∼ −EY − (π|Y )∗(f∗KC + E) + (π|Y )∗
(c2(S)

12
F − E0

)
= −EY + (π|Y )∗

((c2(S)
12

− (2g(C)− 2)−
∑
j∈J

(1− 1

mj
)
)
F − 2E0

)
= −EY + (π|Y )∗

(
2
∑
c∈C

S̃c − δ(f)F
)

where the last equality is due to Lemma 4.6 and δ(f) > 0 is defined in Notation 4.2 (4). We use
Remark 4.9 and the notations therein. The pullback (π|Y )∗S̃c via the blow-up π|Y equals

(π|Y )−1
∗ (S̃c) +



1
3Y1 II
1
2Y1,2 III
1
2Y1,2,3 IV
1
2 (Y1,2 + Y1,3 + Y1,4 + Y1,5) I∗0
3
2Y1,2 +

7
6Y2,3 +

5
6Y3,4 +

1
2 (Y4,5 + Y6,7) +

1
3Y6,8 +

1
6Y5,6 + Y8,9 II∗

5
4 (Y1,2 + Y7,8) +

3
4 (Y2,3 + Y6,7) +

1
2Y4,5 +

1
4 (Y3,4 + Y4,6) III∗

Y1,2 + Y3,4 + Y5,6 +
1
3 (Y2,7 + Y4,7 + Y6,7) IV∗

where (π|Y )−1
∗ (S̃c) is the proper transform and Yi,j is the exceptional divisor over ei ∩ ej (scheme-

theoretically).

Remark 4.14. We remind readers that, when the blown-up point s lies in the fibre of Types I∗0, II∗, III∗
or IV∗, the ideal sheaf IΓ,s is reduced and the corresponding blow-up is the usual one; hence the coefficient
of (π|Y )∗S̃c along Yi,j is simply the sum of the coefficients of S̃c along ei and ej . However, the blown-up
point in the fibre of Types II, III or IV is non-reduced (cf. Table 1), in which cases, the coefficient of
(π|Y )∗S̃c along Yi,j is a bit more involved. We refer to Example 4.15 for the explicit calculation on the
case of Type IV for the convenience of the reader but skip other cases for the organisation of our paper.

Now, we come back to the proof of our lemma. By the above list, within each singular fibre Sc, there
exists a pair of indices i1 ̸= i2 ∈ I such that ei1 ∩ ei2 ̸= ∅ and the coefficient

coeff
(π|Y )∗(S̃c)

Yi1,i2 ≤ 1

2
.

Therefore,
2(π|Y )∗S̃c −

∑
s∈Γ∩Sc

Ys

is a linear combination of some components of the fibre of Y → C over c ∈ C satisfying (2) of Lemma 4.12.
Noting that EY =

∑
s∈Γ Ys and δ(f) > 0, we see that the divisor

Y |Y ≡ ξ|Y + (π|Y )∗
(c2(S)

12
F − E0

)
∼Q

∑
c∈C

(
−

∑
s∈Γ∩Sc

Ys + 2(π|Y )∗S̃c

)
− δ(f)(π|Y )∗F

is not pseudo-effective by Lemma 4.12. Our lemma is thus proved. □

Example 4.15. In this example, we calculate the blow-up of the non-reduced point in the fibre of Type
IV (cf. Table 1). Let f(x, y) = (y−x)(y−ζx)(y−ζ2x) = y3−x3 be the union of three lines on A2, where
ζ = exp(2iπ/3) is the primitive root of unity. Then the partial derivatives fx = −3x2 and fy = 3y2. So
the blown-up ideal is I = (x2, y2) (cf. [Ser96, Proof of Proposition 3.1]). Let [a : b] be the homogeneous
coordinates of P1. Then the blow-up π of I is defined by y2a−x2b = 0 in A2×P1. Consider the pullback
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of L, L1 and L + L1, where L := {y − x = 0} is a component of f(x, y) = 0, and L1 := {y + x = 0)}.
These pullbacks are defined by

(π|Y )∗L :

{
y2a− x2b = 0,

y − x = 0,
(π|Y )∗L1 :

{
y2a− x2b = 0,

y + x = 0,
and (π|Y )∗(L+ L1) :

{
y2a− x2b = 0,

y2 − x2 = 0.

Their proper transforms are

L̃ :


y2a− x2b = 0,

a− b = 0,

y − x = 0,

L̃1 :


y2a− x2b = 0,

a− b = 0,

y + x = 0,

and L̃+ L̃1 :

{
y2a− x2b = 0,

a− b = 0,

Note that L̃+ L̃1 is a Cartier divisor on the blow-up of I. The π-exceptional divisor E is defined by
y2a− x2b = 0,

x2 = 0,

y2 = 0,

or just

{
y2a− x2b = 0,

x2 = 0,
on the affine chart a ̸= 0.

On the affine chart a ̸= 0 (equivalently, a = 1), we may calculate the lengths:

C[x, y, b]/(y2 − x2, 1− b, y − x, x2) ≃ C[x]/(x2) has length 2;

C[x, y, b]/(y2 − x2, 1− b, y + x, x2) ≃ C[x]/(x2) has length 2;

C[x, y, b]/(y2 − x2, 1− b, x2) ≃ C[x, y]/(x2, y2) has length 4.

By [Ful98, Proposition 7.1], we have

L̃.E ≤ 2, L̃1.E ≤ 2, (L̃+ L̃1).E = 4.

Therefore, L̃.E = L̃1.E = 2. Assume the pullback of L is π∗L = L̃ + tE. Then it follows from the
projection formula that

0 = (L̃+ tE) · E = 2 + tE2.

By [Ful98, Page 79, the paragraph before Example 4.3.1], the anti-self-intersection −E2 is the (Samuel)
multiplicity of the blown-up point, which is 4. Therefore, we have t = 1/2 and hence π∗L = L+ 1/2E.

Corollary 4.16. Suppose that f is isotrivial. If TS is pseudo-effective, then c2(S) = 0.

Proof. Assume that c2(S) > 0. Then Y |Y is not pseudo-effective by Lemma 4.13. On the other hand,
by Lemma 4.11, we have c2(S) = 0, a contradiction. □

Proof of Theorem 4.1. The equivalence of (2) and (3) follows from Lemma 4.4. The implication (2) ⇒ (1)

is proved in Lemma 4.5. The implication (1) ⇒ (2) follows from Proposition 4.7 and Corollary 4.16. □

In the last part of this section, we study the Kodaira dimension κ(P(TS),O(1)).

Lemma 4.17. If TS is pseudo-effective, then OP(TS)(1) is Q-linearly equivalent to an effective divisor.
In particular, κ(P(TS),O(1)) ≥ 0.

Proof. By Lemma 4.5, we know that ξ ∼ Y + π∗TS/C and TS/C ≡ E0 − 1
12c2(S)F . Since TS is pseudo-

effective, applying Theorem 4.1, we have c2(S) = 0 and hence E0 = 0; in particular, TS/C ≡ 0. We shall
show that TS/C ∼Q 0. Indeed, in the view of Notation 2.2 (7), Notation 4.2 (3) and Serre duality, we
have

TS/C = −KS + f∗KC +
∑

(mj − 1)Fj + E0 = −f∗((R1f∗OS)
∨) = −f∗(f∗ωS/C).

Since deg(f∗ωS/C) = χ(S,OS) = (c1(S)
2 + c2(S))/12 = 0, by [BHPVdV04, III, (18.3) Proposition],

f∗ωS/C and hence TS/C are Q-trivial. Consequently, ξ ∼Q Y and thus κ(P(TS),O(1)) ≥ 0. □

Lemma 4.18. Let f : S → C be a locally trivial elliptic fibration over a smooth projective curve C of
genus g = g(C) ≥ 1. Then κ(P(TS),O(1)) = 1− κ(C).
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Proof. Since χ(S,OS) = 0, after replacing S by a further étale cover, we may assume that the relative
tangent bundle TS/C is trivial (cf. [BHPVdV04, III, (18.3) Proposition] and Lemma 2.8). We consider
the symmetric power of the following short exact sequence

0 → OS → TS → f∗TC → 0,

noting that TS/C = OS by our reduction. For each positive integer m, we have

0 → Symm−1 TS → Symm TS → f∗(−mKC) → 0.

Hence, we have

h0(S, Symm TS) ≤ 1 +

m∑
i=1

h0(S, f∗(−iKC)).

In particular, if g(C) ≥ 2, then h0(S, Symm TS) ≤ 1 for any m. On the other hand, since f is
smooth, it follows from Theorem 4.1 that TS is pseudo-effective. Together with Lemma 4.17, we have
h0(S, Symm TS) = 1 for any m whenever g(C) ≥ 2. As a result, κ(P(TS),O(1)) = 0 when g(C) ≥ 2.

If g(C) = 1, then by the vanishing of δ(f) (cf. Notation 4.2 (4)), we have κ(S) = 0. Since S is also
minimal, our lemma follows from Lemma 3.1. □

As a corollary, we show our main theorem when S is assumed to be minimal.

Corollary 4.19. Let S be a smooth minimal projective surface, i.e., KS is nef. Then the tangent bundle
TS is pseudo-effective if and only if the second Chern class c2(S) = 0. Moreover, after a Galois étale
cover, S admits a locally trivial elliptic fibration onto a smooth projective curve C with κ(S) = κ(C). In
particular, after a further étale cover, S is either an abelian surface or isomorphic to a product of an
elliptic curve and a smooth curve of genus ≥ 2.

Proof. The first statement follows from Lemma 3.1, Proposition 3.3, and Theorem 4.1. Let f : S → C

be an elliptic fibration. Note that κ(S) = 0 or 1 and c2(S) = 0 if and only if the only singular fibres of
f are multiple of elliptic curves. If C ≃ P1, then f has at least three multiple fibres, since δ(f) ≥ 0 by
[BHPVdV04, V, (12.5) Proposition]. Applying [GMM21, Lemma 1.1.9], we get a finite Galois étale map
gS : S

′ → S which is induced by a ramified base change g : C ′ → C and f ′ : S′ → C ′ has no multiple
fibre. That is, f ′ is a locally trivial elliptic fibration. Note that when κ(S) = 1, one has δ(f ′) > 0 and
hence g(C ′) ≥ 2; when κ(S) = 0, one has 0 ≤ κ(C ′) ≤ κ(S′) = 0 and hence κ(C ′) = 0. Finally, the last
part of our corollary follows from [Har10, Corollary 26.5]. □

5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. In the view of Propositions 3.2 and 3.3 and Theorem 4.1,
our main task left is to exclude the non-minimal surface which is of Kodaira dimension one and has
pseudo-effective tangent bundle. The following theorem is our main result of this section.

Theorem 5.1. Let S be a smooth projective surface of κ(S) = 1. If TS is pseudo-effective, then KS is
nef, i.e., S is minimal.

Proof. In the view of Lemmas 2.7 and 4.3, we only need to exclude the case when S := S2 is a blow-up of
a smooth minimal surface S1. Suppose to the contrary that the tangent bundle TS2

is pseudo-effective.
Let us consider the following commutative diagram as in Notation 2.3

P(TS1
)

π1

��

P(h∗TS1
) //______

π̃1

��

h̃oo P(TS2
)

π2

��

S1

f1
��

S2

f2
xxrrr

rrr
rrr

rrr
hoo S2

C
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where h : S2 → S1 is a single blow-up between smooth projective surfaces with an exceptional (−1)-curve
D, f1 : S1 → C is an elliptic fibration onto a smooth curve C, f2 := f1 ◦ h, and πi : P(TSi

) → Si is the
natural projection. Let ξi be the tautological divisor of the projective bundle P(TSi

) and let Yi be the
divisor in P(TSi) defined in Notation 2.2 (8). Then we have ξi ∼ Yi + π∗

i TSi/C (cf. Notation 2.2 (9)).
We apply Corollary 4.19 to get an étale morphism S′

1 → S1, which is induced by a (possibly ramified)
base change g : C ′ → C, such that S′

1 admits a locally trivial elliptic fibration over a smooth curve C ′ of
genus ≥ 2. Then we have the following commutative diagram induced by the base change

S′
2

g2
//

h′

��

S2

h

��

S′
1

g1
//

f ′
1

��

S1

f1

��

C ′ g
// C

where h′ is the blow-up along smooth (reduced) points and g2 is étale. Then TS′
2
= g∗2TS2

is pseudo-
effective (cf. Lemma 2.8). Replacing Si with S′

i, we may assume that f1 is locally trivial with g(C) ≥ 2.
Since the divisor ξ2 is pseudo-effective, it follows from the divisorial Zariski decomposition (cf. [Bou04,

Theorem 3.12]) that
ξ2 ≡

∑
aiPi +N,

where ai > 0, Pi are prime divisors and N is a modified nef R-divisor. Since TS2 is pseudo-effective,
applying Lemma 2.7 and Corollary 4.19, we know that c2(S1) = 0 (indeed, we can even make S1 a product
variety); hence, TS1/C ≡ 0 (cf. Lemmas 4.5 and 4.6). We calculate the difference (cf. Notation 2.2 (7))

h∗TS1/C − TS2/C = −h∗KS1 +KS2 + h∗ES1 − ES2 = D + h∗ES1 − ES2 = D,

where ESi
is defined in Notation 2.2 (5). Therefore, by Notation 2.2 (9), we have

Y2 − π∗
2D ∼ ξ2 ≡

∑
aiPi +N.

Without loss of generality, we may assume that P1 = Y2 with a1 possibly being zero. Since 0 ̸= −π∗
2D

is anti-pseudo-effective, we see that 0 ≤ a1 < 1. From the numerical equivalence

(1− a1)Y2|Y2 ≡
∑
i≥2

aiPi|Y2 +N |Y2 + (π2|Y2)
∗D,

the pseudo-effectiveness of Y2|Y2 follows, noting that π∗
2D|Y2 is effective. On the other hand, we have the

following equivalence (cf. Notation 2.2 (9))

Y2|Y2 ≡ (ξ2 + π∗
2D)|Y2 ∼ −Exc(π2|Y2) + (π2|Y2)

∗(−f∗
2KC +D).

Since g(C) ≥ 2, after moving one free fibre from f∗KC to f−1
2 (f2(D)), our Y2|Y2

is anti-pseudo-effective
and non-zero, which contradicts Y2|Y2

being pseudo-effective. So we finish the proof of our theorem. □

Proof of Theorem 1.3. In the view of Propositions 3.2 and 3.3, we may assume that κ(S) = 1. Then,
the first half follows from Theorems 4.1 and 5.1. The second half follows from Lemmas 3.1 and 4.18
and Corollary 4.19. □

6. Ruled surface over non-rational base, Proof of Proposition 1.6

In the last section, we study non-rational uniruled surfaces with pseudo-effective tangent bundles.
First, we show that any projective bundle (of arbitrary rank) over a smooth curve always has a pseudo-
effective tangent bundle, which slightly extends [Kim22].

Proposition 6.1 (cf. [Kim22]). The tangent bundle TX of any projective bundle f : X = PC(E) → C

over a smooth curve C is pseudo-effective. In particular, TX is pseudo-effective but non-big if and only
if E is semi-stable and C ̸≃ P1.
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Proof. In the view of [Kim22], we only need to show that when E is semi-stable, the tangent bundle TX

is pseudo-effective.
Now E is semi-stable, so are E∨ and hence E∨ ⊗ E . Since the determinant det(E∨ ⊗ E) ≃ OC , the

semi-stable vector bundle E∨⊗E is nef by [Laz04, Proposition 6.4.11]. We consider the following relative
Euler sequence

0 −→ OX −→ f∗E∨ ⊗OX(1) −→ TX/C −→ 0,

where the relative tangent bundle TX/C := Ω∨
X/C . Then the following composite map (cf. [Har77, Chap-

ter II, Proposition 7.11(2)])

f∗(E∨ ⊗ E) −→ f∗E∨ ⊗OX(1) −→ TX/C

is a surjection, which implies that TX/C is nef (cf. [Laz04, Proposition 6.1.2]) and hence pseudo-effective.
So our proposition follows from Lemma 2.5. □

Now we are in the position of proving Proposition 1.6.

Proof of Proposition 1.6. Let h : S2 → S1 be the blow-up of S1 = S along p. We may assume that E
is normalised (cf. [Har77, Chapter V, Notation 2.8.1]). Since TS1

is pseudo-effective but not big, by
Proposition 6.1, E is semi-stable. Together with E being normalised, we have deg det E ≥ 0. Denote by
C0 the tautological divisor on S1 = PC(E), which is not necessarily effective. Then NE(S1) = Nef(S1) =

R+(2C0 − f∗
1 det E) + R+F , where F is a fibre of f1 = f : S1 = S → C (cf. [Miy87a, Proposition 3.1]).

Consider the following commutative diagram as in Notation 2.3.

P(TS1
)

π1

��

P(h∗TS1
) //______

π̃1

��

h̃oo P(TS2
)

π2

��

S1

f1
��

S2

f2
xxrrr

rrr
rrr

rrr
hoo S2

C

Let D be the h-exceptional (−1)-curve, f2 := f1 ◦ h the induced composite map, ξi the tautological
divisor of the projective bundle P(TSi), and Yi the divisor in P(TSi) defined in Notation 2.2 (8). Then
we have (cf. Notation 2.2 (9))

ξi ∼ Yi + π∗
i TSi/C .

Let us calculate the difference

h∗TS1/C − TS2/C = −h∗KS1 +KS2 + h∗ES1 − ES2 = D + h∗ES1 − ES2 = D,

where ESi
is defined in Notation 2.2 (5). Here, since f1 is smooth and the only singular fibre of f2 is

reduced, we have h∗ES1
= ES2

= 0 and

TS1/C = −KS1 + f∗
1KC ∼ 2C0 − f∗

1 det E .

Claim 6.2. The divisor TS2/C = h∗TS1/C −D is pseudo-effective if and only if there exist some positive
integer m and some line bundle L ≡ TS1/C such that H0(S1,m

m
p ⊗ L⊗m) ̸= 0, where mp is the maximal

ideal of OS1,p.

Proof of Claim 6.2. One direction is clear. Let us assume that h∗TS1/C − D is pseudo-effective. Then
we have the Zariski decomposition h∗TS1/C − D ≡

∑
i aiPi + N , where N is nef and

∑
i aiPi has

negative definite intersection matrix. Since (h∗TS1/C − µD)2 < 0 for any µ > 0, there exists at least
one, say P1, which is not h-exceptional such that P 2

1 < 0. Pushing this forward to S1, we obtain
TS1/C ≡

∑
i aih∗Pi + h∗N . Since TS1/C is extremal, TS1/C ≡ th∗P1 for some t > 0. Suppose to the

contrary that for any positive integer m and any line bundle L ≡ TS1/C , one has h0(S1,m
m
p ⊗L⊗m) = 0.

By our assumption, h∗(h∗P1) = P1 + sD with st < 1; cf. [Har77, Chapter V, Proposition 3.6]. Hence,
h∗TS1/C − D ≡ tP1 − (1 − st)D which is not pseudo-effective by noting that P1 is extremal and not
parallel to D. This leads to a contradiction to our assumption. □
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We come back to the proof of Proposition 1.6. If H0(S1,m
m
p ⊗ L⊗m) ̸= 0 for some positive integer

m and some line bundle L ≡ TS1/C , then TS2/C = h∗TS1/C − D is pseudo-effective and thus TS2
is

pseudo-effective, noting that ξ2 ∼ Y2 + π∗
2TS2/C (cf. Lemma 2.5).

Now we assume that H0(S1,m
m
p ⊗L⊗m) = 0 for any positive integer m and any line bundle L ≡ TS1/C .

Suppose that ξ2 is pseudo-effective. It follows from the divisorial Zariski decomposition (cf. [Bou04,
Theorem 3.12]) that

Y2 + π∗
2TS2/C ∼ ξ2 ≡

∑
aiPi +N,

where ai > 0, Pi are prime divisors and N is a modified nef R-divisor. By Notation 2.2 (9), ξ2|Y2
=

−Exc(π2|Y2
) − (π2|Y2

)∗f∗
2KC , which is anti-pseudo-effective and non-zero. Without loss of generality,

we may assume that P1 = Y2 with a1 > 0. Note that now π∗
2TS2/C ∼ ξ2 − Y2 is not pseudo-effective by

Claim 6.2 (cf. [Nak04, Chapter II, Lemma 5.6]). Consequently, we deduce that 0 < a1 < 1. Consider
the following restriction

(ξ2 − a1Y2)|Y2 = ((1− a1)ξ2 + a1π
∗
2TS2/C)|Y2

= (1− a1)(−Exc(π2|Y2
)− (π2|Y2

)∗f∗
2KC) + a1(π2|Y2

)∗TS2/C

which is a pseudo-effective divisor on Y2. Pushing this forward to S2 along the birational morphism
π2|Y2

, we have the pseudo-effectiveness of

(π2|Y2)∗((ξ2 − a1Y2)|Y2) = −(1− a1)f
∗
2KC + a1TS2/C ,

while the RHS is never pseudo-effective whenever 0 < a1 < 1 and g(C) ≥ 1. In particular, our assumption
is absurd and ξ2 is thus not pseudo-effective. So we finish the proof of our proposition. □
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