Jia Jia https://mathjiajia.github.io/

Conference on Algebraic Geometry and Number Theory, ECNU

September 23, 2023

Smooth projective surfaces with pseudo-effective tangent bundles

joint work with Yongnam Lee and Guolei Zhong

Table of Contents

1 Positivity of Vector Bundles

2 Uniruled Ones

3 Non-uniruled Surfaces

Positivity of Vector Bundles

1 Positivity of Vector Bundles

2 Uniruled Ones3 Non-uniruled Surfaces

We work over the field ${\ensuremath{\mathbb C}}$ of complex numbers.

1/18

Definition

We work over the field $\ensuremath{\mathbb{C}}$ of complex numbers.

Let X be a smooth projective variety.

Given a vector bundle \mathcal{E} on X, denote by $\mathbb{P}(\mathcal{E}) := \mathbb{P}(Sym^{\bullet}\mathcal{E})$ the Grothendieck projectivization of \mathcal{E} with $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ the relative hyperplane section bundle.

Definition

We work over the field ${\mathbb C}$ of complex numbers.

Let X be a smooth projective variety.

Given a vector bundle \mathcal{E} on X, denote by $\mathbb{P}(\mathcal{E}) := \mathbb{P}(Sym^{\bullet}\mathcal{E})$ the Grothendieck projectivization of \mathcal{E} with $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ the relative hyperplane section bundle.

Definition

The vector bundle \mathcal{E} on X is ample (resp. nef, big, pseudo-effective) if $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ is ample (resp. nef, big, pseudo-effective) on $\mathbb{P}(\mathcal{E})$.

Remark

Let $\pi \colon \mathbb{P}(\mathcal{E}) \to X$ be the projection. Then $\pi_* \mathcal{O}_{\mathbb{P}(\mathcal{E})}(m) = \operatorname{Sym}^m \mathcal{E}$ for all $m \ge 0$.

Ample and Big

Theorem (Hartshorne's Conjecture, Mori, 1979)

Let X be a smooth projective variety and let \mathcal{T}_X be its tangent bundle. Then \mathcal{T}_X is ample if and only if $X \simeq \mathbb{P}^n$.

Ample and Big

Theorem (Hartshorne's Conjecture, Mori, 1979)

Let X be a smooth projective variety and let \mathcal{T}_X be its tangent bundle. Then \mathcal{T}_X is ample if and only if $X \simeq \mathbb{P}^n$.

Theorem (Mallory, 2021 and Miyaoka, 1987)

Let X be a smooth projective variety. If \mathcal{T}_X is big then X is uniruled.

Nef

Conjecture (Campana-Peternell, 1991)

Any Fano manifold whose tangent bundle is nef is rational homogeneous.

Theorem (Demailly-Peternell-Schneider, 1994)

Any compact Kähler manifold with nef tangent bundle admits a finite étale cover with smooth Albanese map whose fibres are Fano manifolds with nef tangent bundle.

Jia Jia

Pseudo-effective (and Big)

Theorem (Höring-Liu-Shao, 2022)

Let X be a smooth del Pezzo surface of degree $d \coloneqq K_X^2$. Then the following holds.

Pseudo-effective (and Big)

Theorem (Höring-Liu-Shao, 2022)

Let X be a smooth del Pezzo surface of degree $d := K_X^2$. Then the following holds. \mathcal{T}_X is pseudo-effective if and only if d > 4.

Pseudo-effective (and Big)

Theorem (Höring-Liu-Shao, 2022)

Let X be a smooth del Pezzo surface of degree $d \coloneqq K_X^2$. Then the following holds.

- ▶ \mathcal{T}_X is pseudo-effective if and only if $d \ge 4$.
- \triangleright \mathcal{T}_X is big if and only if $d \ge 5$.

Jia Jia

Pseudo-effective (and Big)

Theorem (Höring-Liu-Shao, 2022)

Let X be a smooth del Pezzo surface of degree $d \coloneqq K_X^2$. Then the following holds.

- ▶ \mathcal{T}_X is pseudo-effective if and only if $d \ge 4$.
- \mathcal{T}_X is big if and only if $d \geq 5$.

Jia Jia

Pseudo-effective (and Big)

Theorem (Höring-Liu-Shao, 2022)

Let X be a smooth del Pezzo surface of degree $d \coloneqq K_X^2$. Then the following holds.

- ▶ \mathcal{T}_X is pseudo-effective if and only if $d \ge 4$.
- \mathcal{T}_X is big if and only if $d \geq 5$.

Moreover \mathcal{T}_X is pseudo-effective if and only if $H^0(X, \operatorname{Sym}^m \mathcal{T}_X) \neq 0$ for some $m \in \mathbb{N}$.

Conjecture

Let X be a smooth projective variety.

Recall the augmented irregularity $q^{\circ}(X)$ of X is defined to be the supremum of

 $q(X') \coloneqq h^1(X', \mathcal{O}_{X'})$

where $X' \to X$ runs over all the finite étale covers of X (Nakayama-Zhang, 2009).

Question

Let X be a non-uniruled smooth projective variety of dimension n. Are the following assertions equivalent?

- **1** The tangent bundle T_X is pseudo-effective;
- 2 The top Chern class $c_n(X)$ vanishes, and the augmented irregularity $q^{\circ}(X)$ does not vanish.

Jia Jia

Criterion of pseudo-effectivity

J/18

Lemma (Höring-Liu-Shao, 2022 and Druel, 2018)

Let X be a projective variety, \mathcal{E} a vector bundle on X, and H a big \mathbb{Q} -Cartier \mathbb{Q} -divisor on X. Then \mathcal{E} is pseudo-effective if and only if for all c > 0 there exist sufficiently divisible integers $i, j \in \mathbb{N}$ such that i > cj and

 $H^0(X, \operatorname{Sym}^i \mathcal{E} \otimes \mathcal{O}_X(jH)) \neq 0.$

Note that $H^0(\mathbb{P}_X(\mathcal{E}), \mathcal{O}(i\xi + j\pi^*H)) = H^0(X, \operatorname{Sym}^i \mathcal{E} \otimes \mathcal{O}_X(jH)).$

Corollary

Let $\mathcal{E} \subseteq \mathcal{F}$ be an injection between two vector bundles over a projective variety X. If \mathcal{E} is pseudo-effective, then so is \mathcal{F} .

Remark

The quotient bundle of a pseudo-effective vector bundle may not be pseudo-effective.

Corollary (Höring-Liu-Shao, 2022)

Let $\pi: X' \to X$ be a birational morphism between smooth projective varieties. If the tangent bundle $\mathcal{T}_{X'}$ is pseudo-effective, then so is \mathcal{T}_X .

Sketch of Proof.

Let $Z \subset X$ be the image of the exceptional locus. For every $i \in \mathbb{N}$, $\pi_*(\operatorname{Sym}^i \mathcal{T}_{X'})$ is torsion-free and $\operatorname{Sym}^i \mathcal{T}_X$ is reflexive. Since $\pi_*(\operatorname{Sym}^i \mathcal{T}_{X'}) = \operatorname{Sym}^i \mathcal{T}_X$ on $X \setminus Z$ and $\operatorname{codim}_X Z \ge 2$, there is an injection

$$\pi_*(\operatorname{Sym}^i \mathcal{T}_{X'}) \hookrightarrow \operatorname{Sym}^i \mathcal{T}_X.$$

Theorem (Höring-Peternell, 2019)

Let X be a normal projective variety with at most klt singularities such that $K_X \equiv 0$. Suppose that X is smooth in codimension two. If the reflexive cotangent sheaf $\Omega_X^{[1]}$ or the tangent sheaf \mathcal{T}_X is pseudo-effective, then $q^{\circ}(X) \neq 0$.

Corollary (Höring-Peternell, 2019 and Nakayama, 2004 and ...)

If X is a (singular) Calabi–Yau or irreducible symplectic variety that is smooth in codimension two, then $\Omega_X^{[1]}$ and \mathcal{T}_X are not pseudo-effective.

Foliation

Proposition (Höring-Peternell, 2021)

Let X be a projective manifold such that \mathcal{T}_X is pseudo-effective. If X is not uniruled, there exists exists a decomposition

 $\mathcal{T}_X \simeq \mathcal{F} \oplus \mathcal{G},$

where $\mathcal{F} \neq 0$ and \mathcal{G} are integrable subbundles such that $c_1(\mathcal{F}) = 0$.

Corollary

The X above is NOT of general type.

Our Result

Main Theorem

Let S be a non-uniruled smooth projective surface. Then TFAE:

Our Result

Main Theorem

Let ${\cal S}$ be a non-uniruled smooth projective surface. Then TFAE:

1 The tangent bundle \mathcal{T}_S is pseudo-effective;

Let ${\cal S}$ be a non-uniruled smooth projective surface. Then TFAE:

- **1** The tangent bundle \mathcal{T}_S is pseudo-effective;
- **2** S is minimal and the second Chern class vanishes, i.e., $c_2(S) = 0$.

Let ${\cal S}$ be a non-uniruled smooth projective surface. Then TFAE:

- **1** The tangent bundle \mathcal{T}_S is pseudo-effective;
- 2 S is minimal and the second Chern class vanishes, i.e., $c_2(S) = 0$.

Let ${\cal S}$ be a non-uniruled smooth projective surface. Then TFAE:

- **1** The tangent bundle \mathcal{T}_S is pseudo-effective;
- 2 S is minimal and the second Chern class vanishes, i.e., $c_2(S) = 0$.

Moreover, if one of the above equivalent conditions holds, then

▶ the Kodaira dimension $\kappa(\mathbb{P}(\mathcal{T}_S), \mathcal{O}(1)) = 1 - \kappa(S) \in \{0, 1\}$, and

Let ${\cal S}$ be a non-uniruled smooth projective surface. Then TFAE:

- **1** The tangent bundle \mathcal{T}_S is pseudo-effective;
- **2** S is minimal and the second Chern class vanishes, i.e., $c_2(S) = 0$.

Moreover, if one of the above equivalent conditions holds, then

- ▶ the Kodaira dimension $\kappa(\mathbb{P}(\mathcal{T}_S), \mathcal{O}(1)) = 1 \kappa(S) \in \{0, 1\}$, and
- ▶ there is a finite étale cover $S' \to S$ such that S' is either an abelian surface or a product $E \times F$ where E is an elliptic curve and F is smooth of genus ≥ 2 .

Counter-example: Higher Dimension

minimality

Example

Let S be a non-minimal smooth projective surface S which contains some (-1)-curve. Let $X \coloneqq E \times S$ where E is an elliptic curve and $p: X \to E$ the projection.

Considering the natural injection

$$0 \longrightarrow p^* \mathcal{O}_E \longrightarrow \mathcal{T}_X,$$

then \mathcal{T}_X is pseudo-effective. However, K_X is not nef.

1 Positivity of Vector Bundles

2 Uniruled Ones3 Non-uniruled Surfaces

Let X be a projective variety of dimension n, H a nef and big divisor on X, and \mathcal{F} a torsion free coherent sheaf on X.

Definition

The slope of \mathcal{F} with respect to H is defined to be the rational number

$$\mu_H(\mathcal{F}) \coloneqq \frac{c_1(\mathcal{F}) \cdot H^{n-1}}{\operatorname{rank}(\mathcal{F})}$$

where c_1 is the first Chern class.

Definition

A torsion-free coherent sheaf \mathcal{E} is said to be μ -semi-stable if for any non-zero subsheaf $\mathcal{F} \subseteq \mathcal{E}$, the slopes satisfy the inequality $\mu_H(\mathcal{F}) \leq \mu_H(\mathcal{E})$.

12/18

Jia Jia

Positivity and Stability

Theorem (Kim, 2022)

Let C be a smooth projective curve and \mathcal{E} a vector bundle on C. Then the projective bundle $X = \mathbb{P}_C(\mathcal{E})$ has big tangent bundle \mathcal{T}_X if and only if \mathcal{E} is unstable or $C = \mathbb{P}^1$.

Projective Bundles

14/18

Proposition

The tangent bundle \mathcal{T}_X of any projective bundle $f: X = \mathbb{P}_C(\mathcal{E}) \to C$ over a smooth curve C is pseudo-effective.

In particular, \mathcal{T}_X is pseudo-effective but non-big iff \mathcal{E} is semi-stable and $C \not\simeq \mathbb{P}^1$.

Proof.

NTS: \mathcal{E} being semi-stable implies \mathcal{T}_X is pseudo-effective. Since the determinant $\det(\mathcal{E}^{\vee} \otimes \mathcal{E}) \simeq \mathcal{O}_C$, the semi-stable vector bundle $\mathcal{E}^{\vee} \otimes \mathcal{E}$ is nef. Consider the following relative Euler sequence

$$0 \longrightarrow \mathcal{O}_X \longrightarrow f^* \mathcal{E}^{\vee} \otimes \mathcal{O}_X(1) \longrightarrow \mathcal{T}_{X/C} \longrightarrow 0,$$

where the relative tangent bundle $\mathcal{T}_{X/C} \coloneqq \Omega^{\vee}_{X/C}$. Then the following composite map

$$f^*(\mathcal{E}^{\vee}\otimes\mathcal{E})\longrightarrow f^*\mathcal{E}^{\vee}\otimes\mathcal{O}_X(1)\longrightarrow\mathcal{T}_{X/C}$$

is a surjection, which implies that $\mathcal{T}_{X/C}$ is nef and hence pseudo-effective.

Proposition

Let $f: S = \mathbb{P}_C(\mathcal{E}) \to C$ be a \mathbb{P}^1 -bundle over a smooth non-rational curve C. Suppose the tangent bundle \mathcal{T}_S is pseudo-effective but not big. Then the blow-up of S along a point p has pseudo-effective tangent bundle if and only if there exist some positive integer m and some line bundle $\mathcal{L} \equiv \mathcal{T}_{S/C}$ such that $H^0(S, \mathfrak{m}_p^m \otimes \mathcal{L}^{\otimes m}) \neq 0$, where \mathfrak{m}_p is the maximal ideal of the local ring $\mathcal{O}_{S,p}$.

Non-uniruled Surfaces

1 Positivity of Vector Bundles

2 Uniruled Ones3 Non-uniruled Surfaces

 $\kappa = 0$

Proposition

Let S be a smooth projective surface of $\kappa(S) = 0$. If \mathcal{T}_S is pseudo-effective, then K_S is nef, i.e., S is minimal.

Remark ($\kappa = 0$ & minimal)

Enriques surface, K3 surface, bi-elliptic surface or abelian surface

Lemma

Let S be a smooth minimal projective surface with $\kappa(S) = 0$. The tangent bundle \mathcal{T}_S is pseudo-effective if and only if S is a Q-abelian surface

$\kappa = 2$, General Type

Revisit

Proposition

Let S be a smooth projective surface of general type. Then T_S is not pseudo-effective.

By the semi-stability of the tangent bundle \mathcal{T}_S with respect to the nef and big K_S , one has $H^0(S, \operatorname{Sym}^i \mathcal{T}_S \otimes \mathcal{O}_S(jK_S)) = 0$.

Remark

Let X be a normal (Q-factorial) projective variety which is of general type and has at worst klt singularities. The reflexive tangent sheaf $\mathcal{T}_X := \Omega_X^{\vee}$ is not pseudo-effective [Höring-Peternell, 2020].

Jia Jia

Example: blow-up of a non-reduced centre

Let $\mathcal{I} = (x^2, y^2) \subseteq \mathbb{C}[x, y]$ be an ideal and let $\pi \colon X = \operatorname{Bl}_{\mathcal{I}}(\mathbb{A}^2) \to \mathbb{A}^2$ be the blow-up. Denote by L the line y = x on \mathbb{A}^2 , \widetilde{L} its proper transform and E the exceptional divisor. Claim: $\pi^*L = \widetilde{L} + 1/2E$.

Let [a:b] be the homogeneous coordinates of \mathbb{P}^1 . Then X is defined by $y^2a - x^2b = 0$ in $\mathbb{A}^2 \times \mathbb{P}^1$.

- $\blacktriangleright \ \widetilde{L}.E = 2;$
- ▶ $E^2 = -4$, which is the (Samuel) multiplicity of the blown-up point;
- $\blacktriangleright E$ is defined by

$$\begin{cases} y^2a - x^2b = 0, \\ x^2 = 0, \\ y^2 = 0, \end{cases} \quad \text{ or just } \quad \begin{cases} y^2a - x^2b = 0, \\ x^2 = 0, \end{cases} \quad \text{ on the affine chart } a \neq 0. \end{cases}$$

Thanks for your attention!