Jia Jia

Tsinghua University, China

August 17, 2023

Wild Automorphisms of Compact Complex Spaces

of lower dimensions

joint work with Long Wang

1 Wild Automorphism

2 Curves and Surfaces

Kähler spacesNon-Kähler Surfaces

3 Dimension 3

Jia Jia

Wild Automorphism

1 Wild Automorphism

Curves and Surfaces
 Dimension 3

Let X be a compact complex space.

We will use the analytic Zariski topology on X whose closed sets are all analytic sets.

Let X be a compact complex space.

We will use the analytic Zariski topology on X whose closed sets are all analytic sets.

Definition

An automorphism $\sigma \in Aut(X)$ is called wild in the sense of Reichstein-Rogalski-Zhang if for any non-empty analytic subset Z of X satisfying $\sigma(Z) = Z$, we have Z = X; or equivalently, for every point $x \in X$, its orbit $\{\sigma^n(x) \mid n \ge 0\}$ is Zariski dense in X.

Jia Jia

Lemma 1 Let X be a compact complex space and let σ be an automorphism on X.

Lemma 1

Let X be a compact complex space and let σ be an automorphism on X.

1 If σ is wild then X is smooth.

Lemma 1

Let X be a compact complex space and let σ be an automorphism on X.

- **1** If σ is wild then X is smooth.
- **2** σ is wild if and only if σ^m is wild for some $m \ge 1$ (and hence for all $m \ge 1$). In particular, a wild automorphism has infinite order.

Lemma 1

Let X be a compact complex space and let σ be an automorphism on X.

- **1** If σ is wild then X is smooth.
- 2 σ is wild if and only if σ^m is wild for some $m \ge 1$ (and hence for all $m \ge 1$). In particular, a wild automorphism has infinite order.

Proof.

Jia Jia

Lemma 1

Let X be a compact complex space and let σ be an automorphism on X.

- **1** If σ is wild then X is smooth.
- 2 σ is wild if and only if σ^m is wild for some $m \ge 1$ (and hence for all $m \ge 1$). In particular, a wild automorphism has infinite order.

Proof.

1 The singular locus $\operatorname{Sing} X$ is an analytic subset of X and stabilised by every automorphism.

Jia Jia

Lemma 1

Let X be a compact complex space and let σ be an automorphism on X.

- **1** If σ is wild then X is smooth.
- 2 σ is wild if and only if σ^m is wild for some $m \ge 1$ (and hence for all $m \ge 1$). In particular, a wild automorphism has infinite order.

Proof.

- **1** The singular locus $\operatorname{Sing} X$ is an analytic subset of X and stabilised by every automorphism.
- 2 If σ^m stabilised an analytic subset Z of X, then σ stabilises the analytic subset $\bigcup_{i=0}^{m-1} \sigma^i(Z)$ of X.

More Properties

Proposition 2

Let X be a compact complex manifold with a wild automorphism σ .

Proposition 2

Let X be a compact complex manifold with a wild automorphism σ .

1 The Euler-Poincaré characteristic $\chi(\mathcal{O}_X) = 0$, and the topological Euler number e(X) = 0. In particular, X is not rationally connected.

Proposition 2

Let X be a compact complex manifold with a wild automorphism σ .

1 The Euler-Poincaré characteristic $\chi(\mathcal{O}_X) = 0$, and the topological Euler number e(X) = 0.

In particular, X is not rationally connected.

2 Let D be a Cartier divisor on X such that $\sigma^* D \sim D$. Then either $|D| = \emptyset$ or $D \sim 0$. In particular, the Kodaira dimension $\kappa(X) \leq 0$; if $\kappa(X) = 0$, then $K_X \sim_{\mathbb{Q}} 0$.

Proposition 2

Let X be a compact complex manifold with a wild automorphism σ .

1 The Euler-Poincaré characteristic $\chi(\mathcal{O}_X) = 0$, and the topological Euler number e(X) = 0.

In particular, X is not rationally connected.

- 2 Let D be a Cartier divisor on X such that $\sigma^* D \sim D$. Then either $|D| = \emptyset$ or $D \sim 0$. In particular, the Kodaira dimension $\kappa(X) \leq 0$; if $\kappa(X) = 0$, then $K_X \sim_{\mathbb{Q}} 0$.
- 3 Suppose that X is Kähler and κ(X) = 0. Then the Beauville-Bogomolov (minimal split) finite étale cover X̃ of X is a product of a complex torus T and some copies of Calabi-Yau manifolds C_i in the strict sense; a positive power of σ lifts to a diagonal action on X̃ = T × Π_i C_i whose action on each factor is wild.

Entropy and Dynamical Degrees

Let X be a compact Kähler manifold of dimension $n \ge 1$, and $f \in Aut(X)$. Denote by $d_i(f)$ the *i*-th dynamical degree of f, that is, the spectral radius of $f^*|_{H^{i,i}(X)}$.

Entropy and Dynamical Degrees

Let X be a compact Kähler manifold of dimension $n \ge 1$, and $f \in Aut(X)$. Denote by $d_i(f)$ the *i*-th dynamical degree of f, that is, the spectral radius of $f^*|_{H^{i,i}(X)}$.

The dynamical degrees are log concave, i.e., $i \mapsto \log d_i(f)$ is concave for $1 \le i \le n-1$. That is $d_{i-1}(f)d_{i+1}(f) \le d_i(f)^2$ for all $1 \le i \le n-1$.

Hence $d_i(f) = 1$ for one *i* with $1 \le i \le n-1$ implies that it holds for all such *i*.

Let X be a compact Kähler manifold of dimension $n \ge 1$, and $f \in Aut(X)$. Denote by $d_i(f)$ the *i*-th dynamical degree of f, that is, the spectral radius of $f^*|_{H^{i,i}(X)}$.

The dynamical degrees are log concave, i.e., $i \mapsto \log d_i(f)$ is concave for $1 \le i \le n-1$. That is $d_{i-1}(f)d_{i+1}(f) \le d_i(f)^2$ for all $1 \le i \le n-1$. Hence $d_i(f) = 1$ for one i with $1 \le i \le n-1$ implies that it holds for all such i.

The topological entropy h(f) of a map f is a dynamical invariant. The classical results of Gromov-Yomdin imply that

 $h(f) = \log \max_{1 \le i \le n} \{ d_i(f) \}.$

Hence f has zero entropy if and only $d_1(f) = 1$.

Jia Jia

Conjectures

Conjecture Reichstein-Rogalski-Zhang 2006

Assume that a compact Kähler space X admits a wild automorphism. Then X is isomorphic to a complex torus.

Conjectures

Conjecture Reichstein-Rogalski-Zhang 2006

Assume that a compact Kähler space X admits a wild automorphism. Then X is isomorphic to a complex torus.

Remark

This is not true if we remove the Kähler condition.

Conjectures

Conjecture Reichstein-Rogalski-Zhang 2006

Assume that a compact Kähler space X admits a wild automorphism. Then X is isomorphic to a complex torus.

Remark

This is not true if we remove the Kähler condition.

The following conjecture is a little bit weaker.

Conjecture Oguiso-Zhang 2022

Every wild automorphism σ of a compact Kähler space X has zero entropy.

Known Results

Theorem (Oguiso-Zhang 2022)

Let X be a projective variety over \mathbb{C} of dimension ≤ 3 . Assume that X admits a wild automorphism σ . Then either X is an abelian variety, or X is a Calabi Yau manifold of dimension three and σ has zero entropy.

Wild automorphisms on complex tori

Proposition 3

Let X be a complex torus and let σ be a wild automorphism on X. Then σ has zero entropy.

Wild automorphisms on complex tori

Proposition 3

Let X be a complex torus and let σ be a wild automorphism on X. Then σ has zero entropy.

Proof.

Write $\sigma = T_b \circ \alpha$ for some translation T_b and $\alpha \in End(X)$.

Since σ is wild, it can be shown that α is unipotent.

Clearly T_b acts on $H^1(X, \mathbb{C})$ as an identity.

We claim that the action of the unipotent $\alpha \in \operatorname{End}(X)$ on $H^1(X, \mathbb{C})$ is also unipotent. In fact, $\operatorname{End}(X)_{\mathbb{Q}} := \operatorname{End}(X) \otimes \mathbb{Q}$ is contained in $M_{2n}(\mathbb{Q})$, and the homomorphism $\operatorname{End}(X) = \sum_{n \in \mathbb{C}} CL(H^1(X, \mathbb{C}))$ preserves unipotency.

and the homomorphism $\operatorname{End}(X)_{\mathbb{Q}} \to \operatorname{GL}(H^1(X,\mathbb{C}))$ preserves unipotency.

Therefore, $d_1(\sigma) = 1$ and σ has zero entropy.

 \blacktriangleright it has a complex torus T_1 as an étale finite cover; or equivalently,

- \blacktriangleright it has a complex torus T_1 as an étale finite cover; or equivalently,
- \blacktriangleright it is the quotient of a complex torus T_2 by a finite group acting freely on T_2 .

- \blacktriangleright it has a complex torus T_1 as an étale finite cover; or equivalently,
- \blacktriangleright it is the quotient of a complex torus T_2 by a finite group acting freely on T_2 .

Proposition 4

Let X be a Q-torus with a wild automorphism σ . Then X is a complex torus.

- \blacktriangleright it has a complex torus T_1 as an étale finite cover; or equivalently,
- \blacktriangleright it is the quotient of a complex torus T_2 by a finite group acting freely on T_2 .

Proposition 4

Let X be a Q-torus with a wild automorphism σ . Then X is a complex torus.

Proof.

```
Let T \longrightarrow X be the minimal splitting cover of X.
Then \sigma lifts to an automorphism on T, also denoted as \sigma.
Note that the \sigma on T normalises H := \operatorname{Gal}(T/X).
Hence \sigma^{r!} centralises every element of H, where r := |H|.
Since \sigma^{r!} is still wild, H consists of translations.
Hence H = {\operatorname{id}_T} by the minimality of T \longrightarrow X.
Therefore, X = T and X is a complex torus.
```

Lemma 5

Let X be a compact complex space and let σ be an automorphism on X.

Lemma 5

Let X be a compact complex space and let σ be an automorphism on X.

Suppose that σ is wild and f: X → Y (resp. g: W → X with g(Sing(W)) ≠ X) is a σ-equivariant surjective morphism of compact complex spaces. Then f (resp. g) is a smooth morphism.

Lemma 5

Let X be a compact complex space and let σ be an automorphism on X.

- Suppose that σ is wild and $f: X \longrightarrow Y$ (resp. $g: W \longrightarrow X$ with $g(Sing(W)) \neq X$) is a σ -equivariant surjective morphism of compact complex spaces. Then f (resp. g) is a smooth morphism.
- 2 Suppose that f: X → Y is a σ-equivariant surjective morphism to a compact complex space Y. If the action σ on X is wild then so is the action of σ on Y (and hence Y is smooth).

Lemma 5

Let X be a compact complex space and let σ be an automorphism on X.

- Suppose that σ is wild and $f: X \longrightarrow Y$ (resp. $g: W \longrightarrow X$ with $g(Sing(W)) \neq X$) is a σ -equivariant surjective morphism of compact complex spaces. Then f (resp. g) is a smooth morphism.
- Suppose that f: X → Y is a σ-equivariant surjective morphism to a compact complex space Y. If the action σ on X is wild then so is the action of σ on Y (and hence Y is smooth).
- Suppose that f: X → Y is a σ-equivariant generically finite surjective morphism of compact complex spaces. Then the action of σ on X is wild if and only if so is the action of σ on Y.
 Further, if this is the case, then f: X → Y is a finite étale morphism, and in particular, it is an isomorphism when f is bimeromorphic.

Lemma 6

Let X be a compact Kähler manifold with a wild automorphism σ , let A be a complex torus and let $f: X \longrightarrow A$ be a σ -equivariant surjective projective morphism with connected fibres of positive dimension. Assume general fibres of f are isomorphic to F. Suppose that a positive power σ_A^s of σ_A fixes some big (1, 1)-class α on A in $H^{1,1}(A)$ (this holds if dim A = 1 or a positive power of σ_A is a translation on A). Then $-K_F$ is not a big divisor.

A maximal rational connected (MRC) fibration on a uniruled compact Kähler manifold has general fibres F rationally connected, and the base is not uniruled.

Jia Jia

A maximal rational connected (MRC) fibration on a uniruled compact Kähler manifold has general fibres F rationally connected, and the base is not uniruled.

Lemma 7

Let X be a uniruled compact Kähler manifold of dimension ≥ 1 , with a wild automorphism σ . Then we can choose the maximal rationally connected (MRC) fibration $X \longrightarrow Y$ to be a well-defined σ -equivariant surjective smooth morphism with $0 < \dim Y < \dim X$. Further, the action of σ on Y is also wild.

Curves and Surfaces

1 Wild Automorphism

2 Curves and Surfaces3 Dimension 3

Theorem 8

Let X be a compact Kähler space of dimension ≤ 2 . Assume that X admits a wild automorphism σ . Then X is a complex torus, and σ has zero entropy.

Theorem 8

Let X be a compact Kähler space of dimension ≤ 2 . Assume that X admits a wild automorphism σ . Then X is a complex torus, and σ has zero entropy.

Proof.

Note that X is smooth and $\kappa(X) \leq 0$. When dim X = 1, X is an elliptic curve. When dim X = 2, we have

Theorem 8

Let X be a compact Kähler space of dimension ≤ 2 . Assume that X admits a wild automorphism σ . Then X is a complex torus, and σ has zero entropy.

Proof.

Note that X is smooth and $\kappa(X) \leq 0$. When dim X = 1, X is an elliptic curve. When dim X = 2, we have

▶ $\kappa(X) = -\infty$: X admits a smooth fibration $f: X \to Y$, with fibres F smooth rational curve and Y an elliptic curve. But then F has ample $-K_F$, a contradiction.

Jia Jia

Theorem 8

Let X be a compact Kähler space of dimension ≤ 2 . Assume that X admits a wild automorphism σ . Then X is a complex torus, and σ has zero entropy.

Proof.

Note that X is smooth and $\kappa(X) \leq 0$. When dim X = 1, X is an elliptic curve. When dim X = 2, we have

- ▶ $\kappa(X) = -\infty$: X admits a smooth fibration $f: X \to Y$, with fibres F smooth rational curve and Y an elliptic curve. But then F has ample $-K_F$, a contradiction.
- ▶ $\kappa(X) = 0$: X is either a complex torus or a hyperelliptic surface. Then X is a complex torus.

Non-Kähler surfaces

Proposition 9

Let X be a compact complex surface which is not Kähler. Suppose that X has a wild automorphism σ . Then X is an Inoue surface of type $S_M^{(+)}$, and σ has zero entropy.

Proposition 9

Let X be a compact complex surface which is not Kähler. Suppose that X has a wild automorphism σ . Then X is an Inoue surface of type $S_M^{(+)}$, and σ has zero entropy.

Proof.

By a result of Cantat, any automorphism of a non-Kähler surface has zero entropy. The surface X has to be minimal.

class of the surface X	$\kappa(X)$	a(X)	$b_1(X)$	$b_2(X)$	e(X)
surfaces of class VII	$-\infty$	0,1	1	≥ 0	≥ 0
primary Kodaira surfaces	0	1	3	4	0
secondary Kodaira surfaces	0	1	1	0	0
properly elliptic surfaces	1	1			≥ 0

Finally, we conclude that X must be an Inoue surface of type $S_M^{(+)}$.

An Inoue surface X is a compact complex surface obtained from $W := \mathbb{H} \times \mathbb{C}$ as a quotient by an infinite discrete group, where \mathbb{H} is the upper half complex plane. Inoue surfaces are minimal surfaces in class VII, contain no curve, and have the following numerical invariants:

$$a(X) = 0, \quad b_1(X) = 1, \quad b_2(X) = 0.$$

There are three families of Inoue surfaces: S_M , $S_M^{(+)}$, and $S_M^{(-)}$.

Jia Jia

Type S_M

Let $M = (m_{i,j}) \in \operatorname{SL}_3(\mathbb{Z})$ be a matrix with eigenvalues α, β, β such that $\alpha > 1$ and $\beta \neq \overline{\beta}$. Take $(a_1, a_2, a_3)^T$ to be a real eigenvector of M corresponding to α , and $(b_1, b_2, b_3)^T$ an eigenvector corresponding to β . Let G_M be the group of automorphisms of W generated by

$$g_0(w, z) = (\alpha w, \beta z),$$

$$g_i(w, z) = (w + a_i, z + b_i), \quad i = 1, 2, 3,$$

which satisfy these conditions

$$g_0 g_i g_0^{-1} = g_1^{m_{i,1}} g_2^{m_{i,2}} g_3^{m_{i,3}},$$

$$g_i g_j = g_j g_i, \quad i, j = 1, 2, 3.$$

Note that $G_M = G_1 \rtimes G_0$ where

$$G_1 = \{g_1^{n_1}g_2^{n_2}g_3^{n_3} \mid n_i \in \mathbb{Z}\} \simeq \mathbb{Z}^3 \text{ and } G_0 = \langle g_0 \rangle \simeq \mathbb{Z}.$$

It can be shown that the action of G_M on W is free and properly discontinuous.

Let $M \in \mathrm{SL}_2(\mathbb{Z})$ be a matrix with two real eigenvalues α and $1/\alpha$ with $\alpha > 1$. Let $(a_1, a_2)^T$ and $(b_1, b_2)^T$ be real eigenvectors of M corresponding to α and $1/\alpha$, respectively, and fix integers $p_1, p_2, r \ (r \neq 0)$ and a complex number τ . Define $(c_1, c_2)^T$ to be the solution of the following equation

$$(I-M)\begin{pmatrix}c_1\\c_2\end{pmatrix} = \begin{pmatrix}e_1\\e_2\end{pmatrix} + \frac{b_1a_2 - b_2a_1}{r}\begin{pmatrix}p_1\\p_2\end{pmatrix},$$

where

$$e_i = \frac{1}{2}m_{i,1}(m_{i,1} - 1)a_1b_1 + \frac{1}{2}m_{i,2}(m_{i,2} - 1)a_2b_2 + m_{i,1}m_{i,2}b_1a_2, \quad i = 1, 2.$$

Let $G_M^{(+)}$ be the group of analytic automorphisms of $W = \mathbb{H} \times \mathbb{C}$ generated by
 $g_0 \colon (w, z) \longmapsto (\alpha w, z + \tau),$
 $g_i \colon (w, z) \longmapsto (w + a_i, z + b_i w + c_i), \quad i = 1, 2,$
 $g_3 \colon (w, z) \longmapsto \left(w, z + \frac{b_1a_2 - b_2a_1}{r}\right).$

The action of $G_M^{(+)}$ is free and properly discontinuous.

18/22

Type $S_M^{(+)}$

Let $M \in \operatorname{GL}_2(\mathbb{Z})$ be a matrix with two real eigenvalues α and $-1/\alpha$ with $\alpha > 1$. Let $(a_1, a_2)^T$ and $(b_1, b_2)^T$ be real eigenvectors of M corresponding to α and $1/\alpha$, respectively, and fix integers $p_1, p_2, r \ (r \neq 0)$ and a complex number τ . Define $(c_1, c_2)^T$ to be the solution of the following equation

$$-(I+M)\begin{pmatrix}c_1\\c_2\end{pmatrix} = \begin{pmatrix}e_1\\e_2\end{pmatrix} + \frac{b_1a_2 - b_2a_1}{r}\begin{pmatrix}p_1\\p_2\end{pmatrix},$$

where

Jia Jia

Wild Automorphism

$$e_{i} = \frac{1}{2}m_{i,1}(m_{i,1} - 1)a_{1}b_{1} + \frac{1}{2}m_{i,2}(m_{i,2} - 1)a_{2}b_{2} + m_{i,1}m_{i,2}b_{1}a_{2}, \quad i = 1, 2.$$

Let $G_{M}^{(-)}$ be the group of analytic automorphisms of $W = \mathbb{H} \times \mathbb{C}$ generated by
 $g_{0} \colon (w, z) \longmapsto (\alpha w, -z),$
 $g_{i} \colon (w, z) \longmapsto (w + a_{i}, z + b_{i}w + c_{i}), \quad i = 1, 2,$
 $g_{3} \colon (w, z) \longmapsto \left(w, z + \frac{b_{1}a_{2} - b_{2}a_{1}}{r}\right).$

The action of $G_M^{(-)}$ is free and properly discontinuous.

19/22

Type $S_M^{(-)}$

Let $M \in \operatorname{GL}_n(\mathbb{Z})$ be a diagonalisable matrix where n = 2 or 3. Assume that M has either

- ▶ two real eigenvalues α (≠ ±1) and $1/\alpha$ or $-1/\alpha$, when n = 2; or
- ▶ three eigenvalues $\alpha \ (\neq \pm 1)$, β and $\overline{\beta} \ (\beta \neq \overline{\beta})$, when n = 3. Denote

 $\Gamma \coloneqq \{N \in \operatorname{GL}_n(\mathbb{Z}) \mid N \text{ and } M \text{ are simultaneously diagonalisable} \}.$

Then $\Gamma \simeq U \times \mathbb{Z}$ where U is a finite group. In particular, if we denote by $M^{\mathbb{Z}}$ the subgroup of Γ generated by M, then the quotient $\Gamma/M^{\mathbb{Z}}$ is finite.

Let $M \in GL_n(\mathbb{Z})$ be a diagonalisable matrix where n = 2 or 3. Assume that M has either

- ▶ two real eigenvalues α (≠ ±1) and $1/\alpha$ or $-1/\alpha$, when n = 2; or
- ▶ three eigenvalues $\alpha \ (\neq \pm 1)$, β and $\overline{\beta} \ (\beta \neq \overline{\beta})$, when n = 3. Denote

 $\Gamma \coloneqq \{N \in \operatorname{GL}_n(\mathbb{Z}) \mid N \text{ and } M \text{ are simultaneously diagonalisable} \}.$

Then $\Gamma \simeq U \times \mathbb{Z}$ where U is a finite group. In particular, if we denote by $M^{\mathbb{Z}}$ the subgroup of Γ generated by M, then the quotient $\Gamma/M^{\mathbb{Z}}$ is finite.

Theorem 10

Let X be an Inoue surface.

▶ If X is of type S_M or $S_M^{(-)}$, then the automorphism group Aut(X) is finite.

Let $M \in GL_n(\mathbb{Z})$ be a diagonalisable matrix where n = 2 or 3. Assume that M has either

- \blacktriangleright two real eigenvalues $\alpha~(\neq\pm1)$ and $1/\alpha$ or $-1/\alpha,$ when n=2; or
- ▶ three eigenvalues $\alpha \ (\neq \pm 1)$, β and $\overline{\beta} \ (\beta \neq \overline{\beta})$, when n = 3. Denote

 $\Gamma \coloneqq \{N \in \operatorname{GL}_n(\mathbb{Z}) \mid N \text{ and } M \text{ are simultaneously diagonalisable} \}.$

Then $\Gamma \simeq U \times \mathbb{Z}$ where U is a finite group. In particular, if we denote by $M^{\mathbb{Z}}$ the subgroup of Γ generated by M, then the quotient $\Gamma/M^{\mathbb{Z}}$ is finite.

Theorem 10

Let X be an Inoue surface.

- ▶ If X is of type S_M or $S_M^{(-)}$, then the automorphism group Aut(X) is finite.
- If X is of type S⁽⁺⁾_M, then the neutral connected component Aut₀(X) of the automorphism group Aut(X) is isomorphic to C^{*} and the group of components Aut(X)/Aut₀(X) is finite.

Dimension 3

1 Wild Automorphism

Curves and Surfaces
 Dimension 3

Dimension 3

A weak Calabi-Yau manifold X is a complex projective manifold with torsion canonical divisor and finite fundamental group. In particular, $H^1(X, \mathcal{O}_X) = 0$ and $\operatorname{Pic}^0(X)$ is trivial.

Dimension 3

A weak Calabi-Yau manifold X is a complex projective manifold with torsion canonical divisor and finite fundamental group. In particular, $H^1(X, \mathcal{O}_X) = 0$ and $\operatorname{Pic}^0(X)$ is trivial.

Theorem 11

Let X be a compact Kähler space of dimension three, and let σ be a wild automorphism of X. Then

A weak Calabi-Yau manifold X is a complex projective manifold with torsion canonical divisor and finite fundamental group. In particular, $H^1(X, \mathcal{O}_X) = 0$ and $\operatorname{Pic}^0(X)$ is trivial.

Theorem 11

Let X be a compact Kähler space of dimension three, and let σ be a wild automorphism of X. Then

1 X is either a complex torus or a weak Calabi-Yau threefold;

Jia Jia

A weak Calabi-Yau manifold X is a complex projective manifold with torsion canonical divisor and finite fundamental group. In particular, $H^1(X, \mathcal{O}_X) = 0$ and $\operatorname{Pic}^0(X)$ is trivial.

Theorem 11

Let X be a compact Kähler space of dimension three, and let σ be a wild automorphism of X. Then

- \blacksquare X is either a complex torus or a weak Calabi-Yau threefold;
- **2** σ has zero entropy.

Jia Jia

Weak Calabi-Yau threefolds

Now we consider a weak Calabi-Yau threefold X.

By a result of Miyaoka(1987), we have $c_2(X) \cdot D \ge 0$ for each nef Cartier divisor D on X. Moreover, by Kobayashi(1987), $c_2(X) \ne 0$, and thus, $c_2(X) \cdot H > 0$ for every ample Cartier divisor H.

Proposition 12

Let X be a weak Calabi-Yau threefold, and let $c_2(X)$ be the second Chern class of X. Assume that either

By a result of Miyaoka(1987), we have $c_2(X) \cdot D \ge 0$ for each nef Cartier divisor D on X. Moreover, by Kobayashi(1987), $c_2(X) \ne 0$, and thus, $c_2(X) \cdot H > 0$ for every ample Cartier divisor H.

Proposition 12

Let X be a weak Calabi-Yau threefold, and let $c_2(X)$ be the second Chern class of X. Assume that either

1 $c_2(X) \cdot D > 0$ for every non-torsion nef Cartier divisor D on X; or

By a result of Miyaoka(1987), we have $c_2(X) \cdot D \ge 0$ for each nef Cartier divisor D on X. Moreover, by Kobayashi(1987), $c_2(X) \ne 0$, and thus, $c_2(X) \cdot H > 0$ for every ample Cartier divisor H.

Proposition 12

Let X be a weak Calabi-Yau threefold, and let $c_2(X)$ be the second Chern class of X. Assume that either

- \mathbf{I} $c_2(X) \cdot D > 0$ for every non-torsion nef Cartier divisor D on X; or
- 2 there exists a non-torsion semi-ample Cartier divisor D on X such that $c_2(X) \cdot D = 0$.

By a result of Miyaoka(1987), we have $c_2(X) \cdot D \ge 0$ for each nef Cartier divisor D on X. Moreover, by Kobayashi(1987), $c_2(X) \ne 0$, and thus, $c_2(X) \cdot H > 0$ for every ample Cartier divisor H.

Proposition 12

Let X be a weak Calabi-Yau threefold, and let $c_2(X)$ be the second Chern class of X. Assume that either

- 1 $c_2(X) \cdot D > 0$ for every non-torsion nef Cartier divisor D on X; or
- 2 there exists a non-torsion semi-ample Cartier divisor D on X such that $c_2(X) \cdot D = 0$.

By a result of Miyaoka(1987), we have $c_2(X) \cdot D \ge 0$ for each nef Cartier divisor D on X. Moreover, by Kobayashi(1987), $c_2(X) \ne 0$, and thus, $c_2(X) \cdot H > 0$ for every ample Cartier divisor H.

Proposition 12

Let X be a weak Calabi-Yau threefold, and let $c_2(X)$ be the second Chern class of X. Assume that either

- 1 $c_2(X) \cdot D > 0$ for every non-torsion nef Cartier divisor D on X; or
- 2 there exists a non-torsion semi-ample Cartier divisor D on X such that $c_2(X) \cdot D = 0$.

Then X has no wild automorphism.

Thanks for your attention!