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Definition

Let X be a compact complex space.
We will use the analytic Zariski topology on X whose closed sets are all analytic sets.

Definition
An automorphism σ ∈ Aut(X) is called wild in the sense of Reichstein-Rogalski-Zhang
if for any non-empty analytic subset Z of X satisfying σ(Z) = Z, we have Z = X; or
equivalently, for every point x ∈ X, its orbit {σn(x) | n ≥ 0} is Zariski dense in X.
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Basic Properties

Lemma 1
Let X be a compact complex space and let σ be an automorphism on X.

1 If σ is wild then X is smooth.
2 σ is wild if and only if σm is wild for some m ≥ 1 (and hence for all m ≥ 1).

In particular, a wild automorphism has infinite order.

Proof.

1 The singular locus SingX is an analytic subset of X and stabilised by every
automorphism.

2 If σm stabilised an analytic subset Z of X, then σ stabilises the analytic subset⋃m−1
i=0 σi(Z) of X.
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More Properties

Proposition 2
Let X be a compact complex manifold with a wild automorphism σ.

1 The Euler-Poincaré characteristic χ(OX) = 0, and the topological Euler number
e(X) = 0.
In particular, X is not rationally connected.

2 Let D be a Cartier divisor on X such that σ∗D ∼ D. Then either |D| = ∅ or D ∼ 0.
In particular, the Kodaira dimension κ(X) ≤ 0; if κ(X) = 0, then KX ∼Q 0.

3 Suppose that X is Kähler and κ(X) = 0. Then the Beauville-Bogomolov (minimal
split) finite étale cover X̃ of X is a product of a complex torus T and some copies of
Calabi-Yau manifolds Ci in the strict sense; a positive power of σ lifts to a diagonal
action on X̃ = T ×

∏
iCi whose action on each factor is wild.
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Entropy and Dynamical Degrees

Let X be a compact Kähler manifold of dimension n ≥ 1, and f ∈ Aut(X).
Denote by di(f) the i-th dynamical degree of f , that is, the spectral radius of f∗|Hi,i(X).

The dynamical degrees are log concave, i.e., i 7→ log di(f) is concave for 1 ≤ i ≤ n− 1.
That is di−1(f)di+1(f) ≤ di(f)

2 for all 1 ≤ i ≤ n− 1.
Hence di(f) = 1 for one i with 1 ≤ i ≤ n− 1 implies that it holds for all such i.

The topological entropy h(f) of a map f is a dynamical invariant.
The classical results of Gromov-Yomdin imply that

h(f) = log max
1≤i≤n

{di(f)}.

Hence f has zero entropy if and only d1(f) = 1.
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Conjectures

Conjecture Reichstein-Rogalski-Zhang 2006

Assume that a compact Kähler space X admits a wild automorphism.
Then X is isomorphic to a complex torus.

Remark
This is not true if we remove the Kähler condition.

The following conjecture is a little bit weaker.

Conjecture Oguiso-Zhang 2022

Every wild automorphism σ of a compact Kähler space X has zero entropy.
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Known Results

Theorem (Oguiso-Zhang 2022)

Let X be a projective variety over C of dimension ≤ 3. Assume that X admits a wild
automorphism σ. Then either X is an abelian variety, or X is a Calabi Yau manifold of
dimension three and σ has zero entropy.
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Wild automorphisms on complex tori

Proposition 3
Let X be a complex torus and let σ be a wild automorphism on X.
Then σ has zero entropy.

Proof.
Write σ = Tb ◦ α for some translation Tb and α ∈ End(X).
Since σ is wild, it can be shown that α is unipotent.
Clearly Tb acts on H1(X,C) as an identity.
We claim that the action of the unipotent α ∈ End(X) on H1(X,C) is also unipotent.
In fact, End(X)Q := End(X)⊗Q is contained in M2n(Q),
and the homomorphism End(X)Q → GL(H1(X,C)) preserves unipotency.
Therefore, d1(σ) = 1 and σ has zero entropy.



W
ild

Au
to

m
or

ph
ism

—
Ji

a
Ji

a

9/22

Wild automorphisms on complex tori

Proposition 3
Let X be a complex torus and let σ be a wild automorphism on X.
Then σ has zero entropy.

Proof.
Write σ = Tb ◦ α for some translation Tb and α ∈ End(X).
Since σ is wild, it can be shown that α is unipotent.
Clearly Tb acts on H1(X,C) as an identity.
We claim that the action of the unipotent α ∈ End(X) on H1(X,C) is also unipotent.
In fact, End(X)Q := End(X)⊗Q is contained in M2n(Q),
and the homomorphism End(X)Q → GL(H1(X,C)) preserves unipotency.
Therefore, d1(σ) = 1 and σ has zero entropy.



W
ild

Au
to

m
or

ph
ism

—
Ji

a
Ji

a

10/22

Q-torus

A compact complex space X is called a Q-torus if
I it has a complex torus T1 as an étale finite cover; or equivalently,

I it is the quotient of a complex torus T2 by a finite group acting freely on T2.

Proposition 4
Let X be a Q-torus with a wild automorphism σ. Then X is a complex torus.

Proof.
Let T −→ X be the minimal splitting cover of X.
Then σ lifts to an automorphism on T , also denoted as σ.
Note that the σ on T normalises H := Gal(T/X).
Hence σr! centralises every element of H, where r := |H|.
Since σr! is still wild, H consists of translations.
Hence H = {idT } by the minimality of T −→ X.
Therefore, X = T and X is a complex torus.
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Wild automorphisms and fibrations

Lemma 5
Let X be a compact complex space and let σ be an automorphism on X.

1 Suppose that σ is wild and f : X −→ Y (resp. g : W −→ X with g(Sing(W )) 6= X)
is a σ-equivariant surjective morphism of compact complex spaces.
Then f (resp. g) is a smooth morphism.

2 Suppose that f : X −→ Y is a σ-equivariant surjective morphism to a compact
complex space Y . If the action σ on X is wild then so is the action of σ on Y (and
hence Y is smooth).

3 Suppose that f : X −→ Y is a σ-equivariant generically finite surjective morphism of
compact complex spaces. Then the action of σ on X is wild if and only if so is the
action of σ on Y .
Further, if this is the case, then f : X −→ Y is a finite étale morphism, and in
particular, it is an isomorphism when f is bimeromorphic.



W
ild

Au
to

m
or

ph
ism

—
Ji

a
Ji

a

11/22

Wild automorphisms and fibrations

Lemma 5
Let X be a compact complex space and let σ be an automorphism on X.

1 Suppose that σ is wild and f : X −→ Y (resp. g : W −→ X with g(Sing(W )) 6= X)
is a σ-equivariant surjective morphism of compact complex spaces.
Then f (resp. g) is a smooth morphism.

2 Suppose that f : X −→ Y is a σ-equivariant surjective morphism to a compact
complex space Y . If the action σ on X is wild then so is the action of σ on Y (and
hence Y is smooth).

3 Suppose that f : X −→ Y is a σ-equivariant generically finite surjective morphism of
compact complex spaces. Then the action of σ on X is wild if and only if so is the
action of σ on Y .
Further, if this is the case, then f : X −→ Y is a finite étale morphism, and in
particular, it is an isomorphism when f is bimeromorphic.



W
ild

Au
to

m
or

ph
ism

—
Ji

a
Ji

a

11/22

Wild automorphisms and fibrations

Lemma 5
Let X be a compact complex space and let σ be an automorphism on X.

1 Suppose that σ is wild and f : X −→ Y (resp. g : W −→ X with g(Sing(W )) 6= X)
is a σ-equivariant surjective morphism of compact complex spaces.
Then f (resp. g) is a smooth morphism.

2 Suppose that f : X −→ Y is a σ-equivariant surjective morphism to a compact
complex space Y . If the action σ on X is wild then so is the action of σ on Y (and
hence Y is smooth).

3 Suppose that f : X −→ Y is a σ-equivariant generically finite surjective morphism of
compact complex spaces. Then the action of σ on X is wild if and only if so is the
action of σ on Y .
Further, if this is the case, then f : X −→ Y is a finite étale morphism, and in
particular, it is an isomorphism when f is bimeromorphic.



W
ild

Au
to

m
or

ph
ism

—
Ji

a
Ji

a

11/22

Wild automorphisms and fibrations

Lemma 5
Let X be a compact complex space and let σ be an automorphism on X.

1 Suppose that σ is wild and f : X −→ Y (resp. g : W −→ X with g(Sing(W )) 6= X)
is a σ-equivariant surjective morphism of compact complex spaces.
Then f (resp. g) is a smooth morphism.

2 Suppose that f : X −→ Y is a σ-equivariant surjective morphism to a compact
complex space Y . If the action σ on X is wild then so is the action of σ on Y (and
hence Y is smooth).

3 Suppose that f : X −→ Y is a σ-equivariant generically finite surjective morphism of
compact complex spaces. Then the action of σ on X is wild if and only if so is the
action of σ on Y .
Further, if this is the case, then f : X −→ Y is a finite étale morphism, and in
particular, it is an isomorphism when f is bimeromorphic.



W
ild

Au
to

m
or

ph
ism

—
Ji

a
Ji

a

12/22

A technical lemma

Lemma 6
Let X be a compact Kähler manifold with a wild automorphism σ, let A be a complex
torus and let f : X −→ A be a σ-equivariant surjective projective morphism with
connected fibres of positive dimension. Assume general fibres of f are isomorphic to F .
Suppose that a positive power σs

A of σA fixes some big (1, 1)-class α on A in H1,1(A)
(this holds if dimA = 1 or a positive power of σA is a translation on A).
Then −KF is not a big divisor.
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MRC

A maximal rational connected (MRC) fibration on a uniruled compact Kähler manifold
has general fibres F rationally connected, and the base is not uniruled.

Lemma 7
Let X be a uniruled compact Kähler manifold of dimension ≥ 1, with a wild
automorphism σ. Then we can choose the maximal rationally connected (MRC) fibration
X −→ Y to be a well-defined σ-equivariant surjective smooth morphism with
0 < dimY < dimX. Further, the action of σ on Y is also wild.
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Kähler spaces

Theorem 8
Let X be a compact Kähler space of dimension ≤ 2. Assume that X admits a wild
automorphism σ. Then X is a complex torus, and σ has zero entropy.

Proof.
Note that X is smooth and κ(X) ≤ 0.
When dimX = 1, X is an elliptic curve.
When dimX = 2, we have

I κ(X) = −∞: X admits a smooth fibration f : X → Y , with fibres F smooth
rational curve and Y an elliptic curve. But then F has ample −KF , a contradiction.

I κ(X) = 0: X is either a complex torus or a hyperelliptic surface. Then X is a
complex torus.
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Non-Kähler surfaces

Proposition 9
Let X be a compact complex surface which is not Kähler. Suppose that X has a wild
automorphism σ. Then X is an Inoue surface of type S

(+)
M , and σ has zero entropy.

Proof.
By a result of Cantat, any automorphism of a non-Kähler surface has zero entropy.
The surface X has to be minimal.

class of the surface X κ(X) a(X) b1(X) b2(X) e(X)

surfaces of class VII −∞ 0, 1 1 ≥ 0 ≥ 0
primary Kodaira surfaces 0 1 3 4 0
secondary Kodaira surfaces 0 1 1 0 0
properly elliptic surfaces 1 1 ≥ 0

Finally, we conclude that X must be an Inoue surface of type S
(+)
M .
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Inoue surfaces

An Inoue surface X is a compact complex surface obtained from W := H× C as a
quotient by an infinite discrete group, where H is the upper half complex plane. Inoue
surfaces are minimal surfaces in class VII, contain no curve, and have the following
numerical invariants:

a(X) = 0, b1(X) = 1, b2(X) = 0.

There are three families of Inoue surfaces: SM , S(+)
M , and S

(−)
M .
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Type SM

Let M = (mi,j) ∈ SL3(Z) be a matrix with eigenvalues α, β, β such that α > 1 and
β 6= β. Take (a1, a2, a3)

T to be a real eigenvector of M corresponding to α, and
(b1, b2, b3)

T an eigenvector corresponding to β. Let GM be the group of automorphisms
of W generated by

g0(w, z) = (αw, βz),

gi(w, z) = (w + ai, z + bi), i = 1, 2, 3,

which satisfy these conditions

g0gig
−1
0 = g

mi,1

1 g
mi,2

2 g
mi,3

3 ,

gigj = gjgi, i, j = 1, 2, 3.

Note that GM = G1 oG0 where

G1 = {gn1
1 gn2

2 gn3
3 | ni ∈ Z} ' Z3 and G0 = 〈g0〉 ' Z.

It can be shown that the action of GM on W is free and properly discontinuous.
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Type S
(+)
M

Let M ∈ SL2(Z) be a matrix with two real eigenvalues α and 1/α with α > 1. Let
(a1, a2)

T and (b1, b2)
T be real eigenvectors of M corresponding to α and 1/α,

respectively, and fix integers p1, p2, r (r 6= 0) and a complex number τ . Define (c1, c2)
T

to be the solution of the following equation

(I −M)

(
c1
c2

)
=

(
e1
e2

)
+

b1a2 − b2a1
r

(
p1
p2

)
,

where

ei =
1

2
mi,1(mi,1 − 1)a1b1 +

1

2
mi,2(mi,2 − 1)a2b2 +mi,1mi,2b1a2, i = 1, 2.

Let G(+)
M be the group of analytic automorphisms of W = H× C generated by

g0 : (w, z) 7−→ (αw, z + τ),

gi : (w, z) 7−→ (w + ai, z + biw + ci), i = 1, 2,

g3 : (w, z) 7−→
(
w, z +

b1a2 − b2a1
r

)
.

The action of G(+)
M is free and properly discontinuous.
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Type S
(−)
M

Let M ∈ GL2(Z) be a matrix with two real eigenvalues α and −1/α with α > 1. Let
(a1, a2)

T and (b1, b2)
T be real eigenvectors of M corresponding to α and 1/α,

respectively, and fix integers p1, p2, r (r 6= 0) and a complex number τ . Define (c1, c2)
T

to be the solution of the following equation

−(I +M)

(
c1
c2

)
=

(
e1
e2

)
+

b1a2 − b2a1
r

(
p1
p2

)
,

where

ei =
1

2
mi,1(mi,1 − 1)a1b1 +

1

2
mi,2(mi,2 − 1)a2b2 +mi,1mi,2b1a2, i = 1, 2.

Let G(−)
M be the group of analytic automorphisms of W = H× C generated by

g0 : (w, z) 7−→ (αw,−z),

gi : (w, z) 7−→ (w + ai, z + biw + ci), i = 1, 2,

g3 : (w, z) 7−→
(
w, z +

b1a2 − b2a1
r

)
.

The action of G(−)
M is free and properly discontinuous.
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Auxiliary
Let M ∈ GLn(Z) be a diagonalisable matrix where n = 2 or 3. Assume that M has
either
I two real eigenvalues α ( 6= ±1) and 1/α or −1/α, when n = 2; or
I three eigenvalues α ( 6= ±1), β and β (β 6= β), when n = 3.

Denote
Γ := {N ∈ GLn(Z) | N and M are simultaneously diagonalisable}.

Then Γ ' U × Z where U is a finite group. In particular, if we denote by MZ the
subgroup of Γ generated by M , then the quotient Γ/MZ is finite.

Theorem 10
Let X be an Inoue surface.

I If X is of type SM or S(−)
M , then the automorphism group Aut(X) is finite.

I If X is of type S
(+)
M , then the neutral connected component Aut0(X) of the

automorphism group Aut(X) is isomorphic to C∗ and the group of components
Aut(X)/Aut0(X) is finite.
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Dimension 3

A weak Calabi-Yau manifold X is a complex projective manifold with torsion canonical
divisor and finite fundamental group.
In particular, H1(X,OX) = 0 and Pic0(X) is trivial.

Theorem 11
Let X be a compact Kähler space of dimension three, and let σ be a wild automorphism
of X. Then

1 X is either a complex torus or a weak Calabi-Yau threefold;
2 σ has zero entropy.
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Weak Calabi-Yau threefolds

Now we consider a weak Calabi-Yau threefold X.
By a result of Miyaoka(1987), we have c2(X) ·D ≥ 0 for each nef Cartier divisor D on X.
Moreover, by Kobayashi(1987), c2(X) 6= 0, and thus, c2(X) ·H > 0 for every ample
Cartier divisor H.

Proposition 12
Let X be a weak Calabi-Yau threefold, and let c2(X) be the second Chern class of X.
Assume that either

1 c2(X) ·D > 0 for every non-torsion nef Cartier divisor D on X; or
2 there exists a non-torsion semi-ample Cartier divisor D on X such that

c2(X) ·D = 0.
Then X has no wild automorphism.
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