
EQUIVARIANT KÄHLER MODEL FOR FUJIKI’S CLASS
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Abstract. Let X be a compact complex manifold in Fujiki’s class C, i.e., admitting a
big (1, 1)-class [α]. Consider Aut(X) the group of biholomorphic automorphisms and
Aut[α](X) the subgroup of automorphisms preserving the class [α] via pullback. We
show that X admits an Aut[α](X)-equivariant Kähler model: there is a bimeromorphic
holomorphic map σ : X̃ → X from a Kähler manifold X̃ such that Aut[α](X) lifts
holomorphically via σ.

There are several applications. We show that Aut[α](X) is a Lie group with only
finitely many components. This generalizes an early result of Fujiki and Lieberman on
the Kähler case. We also show that every torsion subgroup of Aut(X) is almost abelian,
and Aut(X) is finite if it is a torsion group.
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1. Introduction

Let X be a compact complex manifold in Fujiki’s class C, i.e., one of the following three
equivalent assumptions is satisfied:

(1) X is the meromorphic image of a compact Kähler manifold;
(2) X is bimeromorphic to a compact Kähler manifold;
(3) X admits a big (1, 1)-class [α].

We refer to [Fuj78, Definition 1.1 and Lemma 1.1], [Var89, Chapter IV, Theorem 5]
and [DP04, Theorem 0.7] for the equivalence and some properties of Fujiki’s class C.
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It is a natural question that can we study the group of biholomorphic automorphisms
Aut(X) via some well-chosen Kähler model of X? So this requires us to trace back to
the construction of the Kähler model. Indeed, Demailly and Paun showed in the proof of
[DP04, Theorem 3.4] that if a compact complex manifold X admits a big (1, 1)-class [α],
then there is a bimeromorphic holomorphic map σ : X ′ → X from a Kähler manifold X ′

obtained by a sequence of blowups along smooth centres determined by the ideal sheaf J
corresponding to some Kähler current T with analytic singularities (cf. Definition 2.2) in
[α]. In general, Aut(X) does not lift via σ, for the first very simple reason that the class
[α] may not be preserved by Aut(X). Then we focus ourselves on the subgroup

Aut[α](X) := {g ∈ Aut(X) | g∗[α] = [α]}.

However, one still cannot expect the lifting of Aut[α](X), for the second reason that the
blown-up ideal sheaf J is not Aut[α](X)-invariant. Therefore, we need to find another
Kähler model in a more natural way. Our idea is to consider the ideal sheaf generated by
g∗J for all g ∈ Aut[α](X).

The following is our main result. Note that the lift action of Aut[α](X) on X̃ is given
by g(−) = (σ−1 ◦ g ◦ σ)(−). By a holomorphic lifting we mean that the lift action is also
holomorphic, i.e., the induced map Aut[α](X)× X̃ → X̃ is holomorphic.

Theorem 1.1. Let X be a compact complex manifold in Fujiki’s class C. For any big
(1, 1)-class [α] on X, there exists a bimeromorphic holomorphic map σ : X̃ → X from a
Kähler manifold X̃ such that Aut[α](X) lifts holomorphically via σ.

Remark 1.2. The bimeromorphic holomorphic map σ in Theorem 1.1 is indeed obtained
by a sequence of Aut[α](X)-equivariant blowups along smooth centres.

Let X be a compact complex manifold. It is known that Aut(X) has the natural
structure of a complex Lie group acting biholomorphically on X (cf. [Dou66]). Denote by
Aut0(X) the connected component of Aut(X) containing the identity. Since it is connected,
the pullback action of Aut0(X) on the (discrete) lattice H2(X,Z) is trivial. When the
∂∂-lemma holds on X, we have the Hodge decomposition that H1,1(X,C) is a subspace of
H2(X,C) and then Aut0(X) acts also trivially on H1,1(X,R). Note that ∂∂-lemma holds
when X admits a big (1, 1)-class. So in this paper, our Aut0(X) is always a subgroup of
Aut[α](X) for any big (1, 1)-class [α] ∈ H1,1(X,R). We refer to [DGMS75, Lemma (5.15)
and Proposition (5.17)] and [Fuj78, Proposition 1.6 and Corollary 1.7] for the details.

When X is a Kähler manifold with a Kähler form α, Fujiki (cf. [Fuj78, Theorem 4.8])
and Lieberman (cf. [Lie78, Proposition 2.2]), separately, proved that

[Aut[α](X) : Aut0(X)] <∞.
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Their proof heavily relies on the Kähler form α (or at least the existence of a Kähler
form).

Nevertheless, with the help of our Theorem 1.1, we can show the following result.

Corollary 1.3. Let X be a compact complex manifold (in Fujiki’s class C). Then

[Aut[α](X) : Aut0(X)] <∞

for any big (1, 1)-class [α] on X.

We also give applications on torsion group actions. When X is a projective variety
defined over any field k of characteristic 0, Javanpeykar [Jav21, Theorem 1.4] showed that
the group of k-automorphisms Autk(X) is finite if it is torsion. We show that the same
result holds true for normal compact complex spaces in Fujiki’s class C.

Corollary 1.4. Let X be a normal compact complex space in Fujiki’s class C. Then
Aut(X)/Aut0(X) has bounded torsion subgroups, i.e., there is a constant C such that
|G| ≤ C for any torsion subgroup G ≤ Aut(X)/Aut0(X). In particular, Aut(X) is a
torsion group if and only if it is finite.

In the previous work [MPZ20], Perroni, Zhang and the second author showed the Jordan
property for Aut(X) when X is a compact complex space in Fujiki’s class C. The proof
there developed a trick by finding some invariant Kähler submanifold Z (with Aut(X)

shrunk a bit) and transferring the attention to a new compact Kähler manifold X ′: the
compactified normal bundle PZ(NZ/X ⊕OZ). Note however Aut(X ′) only keeps tracking
of finite subgroups (more generally reductive subgroups or torsion subgroups) of Aut(X).

Now with the help of Corollary 1.3, we can provide an alternative proof.

Corollary 1.5. Let X be a compact complex space in Fujiki’s class C. Then there exists
a constant J such that any torsion subgroup G of Aut(X) has an abelian subgroup H ≤ G

with [G : H] ≤ J . In particular, Aut(X) has Jordan property.
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2. Preliminaries

Let X be a compact complex manifold with a fixed positive definite Hermitian form ω.
Let α be a closed (1, 1)-form. We use [α] to represent its class in H1,1(X,R). We define
the following positivity notions (independent of the choice of ω):

• [α] is Kähler if it contains a Kähler form, i.e., if there is a smooth function ϕ such
that α +

√
−1
2π
∂∂ϕ ≥ εω on X for some ε > 0.

• [α] is big if it contains a Kähler current T , i.e., if there is a quasi-plurisubharmonic
function ϕ : X → R ∪ {−∞} such that T := α +

√
−1
2π
∂∂ϕ ≥ εω holds weakly as

currents on X for some ε > 0.

Recall that a quasi-plurisubharmonic function means that locally it is given by the sum of
a plurisubharmonic function plus a smooth function.

We recall the definition of the non-Kähler locus of a big class [α].

Definition 2.1. Let X be a compact complex manifold and [α] a big (1, 1)-class. Then
the non-Kähler locus of [α] (or α) is defined and denoted by

EnK(α) := EnK([α]) :=
⋂
T∈[α]

Sing(T ),

where the intersection ranges over all Kähler currents T = α +
√
−1∂∂̄ϕ in the class [α],

and Sing(T ) is the complement of the set of points x ∈ X such that ϕ is smooth near x.

We recall the basic definition of analytic singularities (cf. [Bou02, Section 2.1]). Note
that the data (J , c) below is not uniquely determined by the function ϕ with analytic
singularities.

Definition 2.2. Let X be a compact complex manifold and [α] a closed (1, 1)-class.

(1) Given a coherent ideal sheaf J and a constant c > 0, we say that a function ϕ has
singularities of type (J , c) if locally it can be written as

ϕ = c log
( n∑
j=1

|fj|2
)

+ h

for some local generators (fj) of J and some smooth function h.
(2) We say that ϕ has analytic singularities if it has singularities of type (J , c) for

some coherent ideal sheaf J and some constant c > 0.
(3) We also say that a closed current T ∈ [α] has analytic singularities if it can

be written as T = α +
√
−1
2π
∂∂ϕ such that the potential function ϕ has analytic

singularities.

The following is a direct application of the regularization theorem by Demailly [Dem92];
see also [DP04, Theorem 3.2].
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Theorem 2.3. Let X be a compact complex manifold with a big (1, 1)-class [α]. Then
there exists a Kähler current T ∈ [α] with analytic singularities.

Boucksom [Bou04, Theorem 3.17] observed further that indeed one can find a Kähler
current with analytic singularities and also with minimal singular locus.

Theorem 2.4. Let X be a compact complex manifold with a big (1, 1)-class [α]. Then there
exists a Kähler current T ∈ [α] with analytic singularities such that Sing(T ) = EnK(α).
In particular, EnK(α) is a closed analytic subspace of X and EnK(α) = ∅ if and only if
[α] is Kähler.

3. Equivariant Kähler model

In this section, we prove Theorem 1.1.
First, we recall the following theorem on the equivariant log resolution of an ideal sheaf

by Bierstone and Milman [BM97, Theorem 1.10].

Theorem 3.1. Let X be a compact complex manifold with a coherent ideal sheaf J . Let
G ≤ Aut(X) such that g∗J = J for any g ∈ G. Then there is a finite sequence

Xk

σk
// · · ·

σ2
// X1

σ1
// X0 = X

of G-equivariant blowups σj, j = 1, . . . , k, along smooth centres, such that σ−1J · OXk is
a normal-crossings divisor.

Proof. In [BM97, Theorem 1.10], the sequence is taken as blowups along invJ -admissible
centres. Note that an invJ -admissible centre is determined by J itself and hence G-
invariant. So the blowups are G-equivariant. We refer to [Wlo09] for the details. �

The following lemma is well-known, and we give a proof for the convenience of the
readers. The result holds true in the algebraic setting with the same proof.

Lemma 3.2. Let σ : X ′ → X be a bimeromorphic holomorphic map of compact complex
spaces. Let G be a complex Lie group acting holomorphically on X such that G lifts via σ.
Then the induced action of G on X ′ is also holomorphic.

Proof. Consider the holomorphic map

φ : G×X ′ ×X ′ → G×X ×X

via (g, x′, y′) 7→ (g, σ(x′), σ(y′)).
Consider the graph of G on X:

Γ := {(g, x, y) ∈ G×X ×X | y = g(x)}
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which is a closed analytic subspace of G×X ×X since the G-action on X is holomorphic.
For each g ∈ G, let Γg|X be the graph of g|X viewed as a fibre of Γ→ G over g. Define

Γg|X′ similarly. Then Γg|X′ is the proper transform of Γg|X in G×X ′ ×X ′ via φ. Let Γ′

be the proper transform of Γ in G×X ′ ×X ′. Then Γ′ is a closed analytic subspace of
G×X ′ ×X ′. By taking the first projection, the fibre of Γ′ → G over g is just Γg|X′

∼= X ′

since g : X ′ → X ′ is biholomorphic. Therefore, the projection to the first two factors
Γ′ → G×X ′ is biholomorphic. Note that Γ′ is the graph of G on X ′. So the G-action on
X ′ is holomorphic. �

Proof of Theorem 1.1. By Theorem 2.3, there exists a Kähler current

T = α +

√
−1

2π
∂∂ϕ ∈ [α]

with analytic singularities of type (Jϕ, c) for some coherent ideal sheaf Jϕ and c > 0. This
means that we may write (locally) that

ϕ = c log
( n∑
j=1

|fj|2
)

+ h

where (fj) are local generators of Jϕ and h is smooth. Consider the Aut[α](X)-invariant
ideal sheaf

J :=
∑

g∈Aut[α](X)

g∗Jϕ.

Since X is compact, J is also coherent (cf. [Dem97, Chapter II, Property (3.22)]). Then
we may write

J =
m∑
i=1

Ji

where Ji := g∗iJϕ for some gi ∈ Aut[α](X).
By Theorem 3.1, there is an Aut[α](X)-equivariant biholomorphic holomorphic map

σ : X̃ → X

which is obtained by a sequence of blowups along smooth centres such that σ−1J · OX̃ is
invertible.

Let J ′i := σ−1Ji · OX̃ . Then
m∑
i=1

J ′i = σ−1J · OX̃

is invertible. Denote by

J̃i := J ′i ·
(
σ−1J · OX̃

)−1
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which is still an ideal sheaf. Then
m∑
i=1

J̃i = OX̃ .

We give several more notations.

• Let s be the local generator of invertible sheaf σ−1J · OX̃ .
• We define a positive current D which is the integration current along the divisor
{s = 0}. By the Poincaré-Lelong formula, D can be locally written as

√
−1
2π
∂∂ log|s|2.

• Fix a (positive definite) Hermitian form ω on X such that g∗i T ≥ ω for each i.
• Let E1, · · · , Er be the (full) exceptional prime divisors of σ.
• One can find δ1, · · · , δr > 0 small enough and a closed smooth (1, 1)-form uE in the
class [E := δ1E1 + · · · + δrEr] such that σ∗ω − uE is a positive definite Hermitian
form (cf. [DP04, Proof of Lemma 3.5]).

We show that X̃ is Kähler by the following claim.

Claim 3.3. The class [α̃] := [σ∗α− cD − uE] contains a Kähler form.

Let T ′i := σ∗g∗i T and f ′j,i := fj ◦ gi ◦ σ. Then the potential function of T ′i is locally of
the form

ϕ′i = c log
( n∑
j=1

|f ′j,i|2
)

+ h ◦ gi ◦ σ

and (f ′j,i)j are local generators of J ′i . Let si be the g.c.d. of the (f ′j,i)’s. Then we can write
down the Siu’s decomposition

T ′i = Ri + cDi

where Di is the integration current along the divisor {si = 0} which can be locally written
as
√
−1
2π
∂∂ log|si|2 and Ri ≥ σ∗ω such that the Lelong super-level (analytic) set Ec(Ri) has

codimension at least 2 (cf. [Bou04, Section 2.2.1–2.2.2] and [Bou02, Section 2.2]). Note
that s is a factor of si since J ′i ⊆ σ−1J · OX̃ . Then we have Di ≥ D and hence

T ′i − cD ≥ Ri ≥ σ∗ω.

We now construct

T̃i := T ′i − cD − uE = (σ∗g∗i α− uE) +

√
−1

2π
∂∂ϕ′i − cD ∈ [α̃].

By the construction, the potential function of T̃i can be locally written as

ϕ̃i = c log
( n∑
j=1

|f ′j,i|2
)

+ h ◦ gi ◦ σ − c log|s|2

= c log
( n∑
j=1

|f̃j,i|2
)

+ h ◦ gi ◦ σ
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where f ′j,i = f̃j,i · s. Note that

T̃i ≥ σ∗ω − uE

while the right-hand side is positive definite by the construction before Claim 3.3. Therefore,
T̃i is also a Kähler current.

Note that J̃i is locally generated by (f̃j,i)j. Then
m⋂
i=1

Sing(T̃i) =
m⋂
i=1

V (J̃i) = V
( m∑
i=1

J̃i
)

= ∅

where V (−) is the zeros of the ideal sheaf. In particular, EnK(α̃) = ∅ and the claim is
proved by Theorem 2.4.

Finally, note that the induced action of Aut[α](X) on X̃ is holomorphic by Lemma 3.2.
�

4. Boundedness on group components

In this section, we are going to prove Corollaries 1.3 and 1.5. Our Corollary 1.3 plays a
key role in the reduction to the Kähler case.

Recall that Fujiki [Fuj78, Theorem 4.8] and Lieberman [Lie78, Proposition 2.2] and
showed separately that

[Aut[α](X) : Aut0(X)] <∞

for a compact Kähler manifold X and a Kähler form α. For the convenience of our proof
for Corollary 1.3, we give a version on a big class generalized by Dinh, Hu and Zhang;
see [DHZ15, Theorem 2.1] for a more generalized setting. Note however their proof still
requires the existence of a Kähler form. We refer to [MZ18, Propositions 2.9 and 3.6] for
a generalized explanation by cone analysis and linear algebra.

Theorem 4.1. Let X be a compact Kähler manifold. Then

[Aut[α](X) : Aut0(X)] <∞

for any big (1, 1)-class [α].

We need the following lemma concerning the descending of connected complex Lie
group action via a bimeromorphic holomorphic map.

Lemma 4.2. Let σ : X ′ → X be a bimeromorphic holomorphic map of normal compact
complex spaces. Then the map

τ : Aut0(X
′)→ Aut0(X), g 7→ σ ◦ g ◦ σ−1

is an injective complex Lie group homomorphism.
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Proof. Note that σ∗OX′ = OX and Aut0(X
′) is connected. Then the lemma is essentially

a corollary of the rigidity lemma (cf. [Akh95, § 2.4, Lemmas 1 and 2]). Note that τ is
injective because σ is bimeromorphic. �

Theorem 4.3. Let X be a normal compact complex space in Fujiki’s class C. Then there
is a Kähler model σ : X̃ → X such that the map

τ : Aut0(X̃)→ Aut0(X)

via τ(g) := σ ◦ g ◦ σ−1 is a complex Lie group isomorphism.

Proof. Let π : X ′ → X be an Aut(X)-equivariant resolution of singularities (cf. [BM97,
Theorem 13.2]). It follows from Lemmas 3.2 and 4.2 that the map

Aut0(X
′)→ Aut0(X), g 7→ π ◦ g ◦ π−1

is a complex Lie group isomorphism since X is normal (see also [Fuj78, Lemma 2.5]).
Note that X ′ is also in Fujiki’s class C. So we may replace X with X ′ and assume that X
is smooth.

Since Aut0(X) is connected, its pullback action on H2(X,Z) is trivial. Note that the
∂∂̄-lemma holds for compact complex manifolds in Fujiki’s class C. So H1,1(X,R) is a
subspace of H2(X,R) and Aut0(X) acts trivially on H1,1(X,R). Let [α] ∈ H1,1(X,R) be
a big (1, 1)-class. Note that Aut0(X) ≤ Aut[α](X).

We take σ as in Theorem 1.1. Then the map

φ : Aut0(X)× X̃ → X̃

via (g, x̃) 7→ (σ−1 ◦ g ◦ σ)(x̃) is well-defined and holomorphic. In particular, Aut0(X) lifts
to a (unique) subgroup of Aut0(X̃). By Lemma 4.2, the map

τ : Aut0(X̃)→ Aut0(X)

via τ(g) := σ ◦ g ◦ σ−1 is an injective complex Lie group homomorphism. We just see the
surjectivity of τ by the lifting property. So τ is isomorphic. �

Proof of Corollary 1.3. Let [α] be a big (1, 1)-class. By Theorem 1.1, there is a Kähler
model σ : X̃ → X such that Aut[α](X) lifts to a group G ≤ Aut(X̃) via σ. By Theorem 4.3,
Aut0(X̃) ≤ G. Note that G ≤ Autσ∗[α](X̃) and σ∗[α] is still big. Since X̃ is Kähler, we
have that

[Autσ∗[α](X̃) : Aut0(X̃)] <∞

by Theorem 4.1. Finally, note that

Aut[α](X)/Aut0(X) ∼= G/Aut0(X̃) ≤ Autσ∗[α](X̃)/Aut0(X̃).

So the corollary is proved. �
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Remark 4.4. Lemma 4.2 and also Theorem 4.3 fail in general if X has non-normal
singularities such that σ∗OX′ = OX does not hold. A simple example is by taking X ′ = P1,
X = {y2z − x3 = 0} the cuspidal curve, and σ just the normalization of X. Note that
Aut(X ′) = Aut0(X

′) = PGL(2) while Aut0(X) is (conjugate to) the subgroup of upper
triangular matrices in PGL(2).

5. Torsion group actions

In this section, we will prove Corollaries 1.4 and 1.5. Our Theorem 1.1 plays a key role
in the reduction to the connected Lie group action.

The following result holds true for algebraic groups defined over an algebraically closed
field of characteristic 0; see [Jav21, Lemma 5.4]. In the case of connected real Lie groups,
the proof is simple by considering the one parameter subgroups.

Lemma 5.1. A torsion connected real Lie group G is trivial.

Proof. Note that a one parameter subgroup is either R or S1. So ifG is positive dimensional,
G contains an element of infinite order. �

For general linear groups over number fields, we may even have boundedness on their
torsion subgroups.

Lemma 5.2. Let G be a torsion subgroup of GLn(K) where K is a number field. Then
|G| ≤ N for some constant N depending only on n and K.

Proof. By the Minkowski’s theorem (cf. [Ser06, Theorem 5, and § 4.3]), there is a constant
M depending only on n and K such that the order o(g) ≤M for any g ∈ GLn(K) with
finite order. By the Burnside’s first theorem (cf. [Lam01, Chapter 3, § 9, Theorem (9.4)]),
|G| ≤ N := Mn3 is finite. �

Proof of Corollary 1.4. Let G be a torsion subgroup of Aut(X)/Aut0(X). Let π : X ′ → X

be an Aut(X)-equivariant resolution of singularities (see also [BM97, Theorem 13.2]),
with Aut(X) lifts to a (unique) subgroup of Aut(X ′) via π. Note that Aut0(X) lifts
(isomorphically) to Aut0(X

′) (cf. [Fuj78, Lemma 2.5]). Then G also lifts to a (unique)
torsion subgroup of Aut(X ′)/Aut0(X

′). Note that X ′ is also in Fujiki’s class C.x Therefore,
we may replace X with X ′ and assume that X is smooth.

Since the pullback action Aut0(X)|H2(X,Q) is trivial, we have the following exact sequence

1 −→ Gτ −→ G −→ G|H2(X,Q) −→ 1

where Gτ is the kernel. Note that G|H2(X,Q) is torsion and hence finite with order bounded
by some N depending only on H2(X,Q) (and hence only on X) by Lemma 5.2. Denote
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by
Autτ (X) := {g ∈ Aut(X) | g∗|H2(X,Q) = id}.

Note that
Gτ ≤ Autτ (X)/Aut0(X) ≤ Aut[α](X)/Aut0(X)

for any big (1, 1)-class [α]. By Corollary 1.3, we have

|Gτ | ≤ C := [Autτ (X) : Aut0(X)],

where C depends only on X. Then |G| ≤ N · C and we get an upper bound.
Finally, if Aut(X) is torsion, then Aut0(X) is trivial by Lemma 5.1 and hence Aut(X)

is finite. �

Remark 5.3. Currently, the normality assumption on X is required in the proof of
Corollary 1.4. The reason is that the equivariant resolution of singularities may enlarge
Aut0(X); see Remark 4.4.

It is well known that any torsion subgroup of the general linear group is almost abelian
by the Jordan–Schur lemma. Lee generalized it to the case of connected real Lie groups;
see [Lee76].

Theorem 5.4. Let G be a connected real Lie group. Then any torsion subgroup H ≤ G

has an abelian subgroup H ′ ≤ H with [H : H ′] ≤ J where J is a constant depending only
on G.

Proof of Corollary 1.5. First, by taking an Aut(X)-equivariant resolution of singularities
(cf. [BM97, Theorem 13.2]) which is still in Fujiki’s class C, we may assume X is smooth.

Let G ≤ Aut(X) be a torsion subgroup. Denote by

Autτ (X) := {g ∈ Aut(X) | g∗|H2(X,Q) = id}.

We may view G/G ∩ Autτ (X) as a torsion subgroup of GL(H2(X,Q)). By Lemma 5.2,
we have

[G : G ∩ Autτ (X)] ≤ N

for some constant N depending only on H2(X,Q) (and hence only on X).
Since Autτ (X) ⊆ Aut[α](X) and by Corollary 1.3, we see that

C := [Autτ (X) : Aut0(X)] <∞

and hence
[G : G ∩ Aut0(X)] ≤ N · C.

By Theorem 5.4, there is an abelian subgroup H ≤ G ∩ Aut0(X) such that

[G ∩ Aut0(X) : H] ≤ J0
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where J0 is a constant depending only on Aut0(X) (and hence only on X).
Together, we have

[G : H] ≤ J := N · C · J0

as desired. �
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