

Automorphism Groups of Compact Complex Surfaces

Recent Development in Algebraic Geometry

Jia Jia August 30, 2022

National University of Singapore

1. T-Jordan Property

2. Tits Alternative

3. Virtual Derived Length

T-Jordan Property

Definition

A group G is **Jordan** if it has "almost" abelian finite subgroups:

there is a constant *J*, such that every finite subgroup *H* of *G* has a (normal) abelian subgroup H_1 with the index $[H : H_1] \leq J$.

It is named after:

Theorem (C. Jordan, 1878) The general linear group GL_n(C) is Jordan.

Jordan's theorem has been generalised to

Theorem (Boothby-Wang, 1964) Any connected Lie group is Jordan

Definition

A group G is **Jordan** if it has "almost" abelian finite subgroups:

there is a constant *J*, such that every finite subgroup *H* of *G* has a (normal) abelian subgroup H_1 with the index $[H : H_1] \leq J$.

It is named after:

Theorem (C. Jordan, 1878) The general linear group $GL_n(\mathbb{C})$ is Jordan.

lordan's theorem has been generalised to

Theorem (Boothby-Wang, 1964) Any connected Lie group is Jordan.

Definition

A group G is **Jordan** if it has "almost" abelian finite subgroups:

there is a constant *J*, such that every finite subgroup *H* of *G* has a (normal) abelian subgroup H_1 with the index $[H : H_1] \leq J$.

It is named after:

Theorem (C. Jordan, 1878) The general linear group $GL_n(\mathbb{C})$ is Jordan.

Jordan's theorem has been generalised to

Theorem (Boothby-Wang, 1964) Any connected Lie group is Jordan.

Question (Popov)

Is the (biholomorphic) automorphism group Aut(X) Jordan for

- an algebraic manifold (variety)?
- a compact complex manifold (space)?

Known results:

Theorem

Aut(X) is Jordan for

- (Meng-Zhang, 2018) projective manifold (variety) X, and
- (J. Kim, 2018) compact Kähler manifold (variety) X.

Question (Popov)

Is the (biholomorphic) automorphism group Aut(X) Jordan for

- an algebraic manifold (variety)?
- a compact complex manifold (space)?

Known results:

Theorem

Aut(X) is Jordan for

- (Meng-Zhang, 2018) projective manifold (variety) X, and
- (J. Kim, 2018) compact Kähler manifold (variety) X.

Question (Popov)

Is the (biholomorphic) automorphism group Aut(X) Jordan for

- an algebraic manifold (variety)?
- a compact complex manifold (space)?

Known results:

Theorem

Aut(X) is Jordan for

- (Meng-Zhang, 2018) projective manifold (variety) X, and
- (J. Kim, 2018) compact Kähler manifold (variety) X.

Let X be a smooth compact complex surface. Then the automorphism group Aut(X) of X is Jordan.

A compact complex space is in Fujiki's class *C* if it is the meromorphic image of a compact Kähler manifold.

Theorem (Meng-Perroni-Zhang, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is Jordan.

Idea: $Aut(X)^*|_{H^2(X,\mathbb{Q})}$ has bounded finite subgroups:

 $1 \longrightarrow \operatorname{Aut}_{\tau}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})} \longrightarrow 1.$

Lemma

Let X be a smooth compact complex surface. Then the automorphism group Aut(X) of X is Jordan.

A compact complex space is in Fujiki's class \mathcal{C} if it is the meromorphic image of a compact Kähler manifold.

Theorem (Meng-Perroni-Zhang, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is Jordan.

Idea: $Aut(X)^*|_{H^2(X,\mathbb{Q})}$ has bounded finite subgroups:

 $1 \longrightarrow \operatorname{Aut}_{\tau}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})} \longrightarrow 1.$

Lemma

Let X be a smooth compact complex surface. Then the automorphism group Aut(X) of X is Jordan.

A compact complex space is in Fujiki's class C if it is the meromorphic image of a compact Kähler manifold.

Theorem (Meng-Perroni-Zhang, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is Jordan.

Idea: $Aut(X)^*|_{H^2(X,\mathbb{Q})}$ has bounded finite subgroups:

 $1 \longrightarrow \operatorname{Aut}_{\tau}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})} \longrightarrow 1.$

Lemma

Let X be a smooth compact complex surface. Then the automorphism group Aut(X) of X is Jordan.

A compact complex space is in Fujiki's class C if it is the meromorphic image of a compact Kähler manifold.

Theorem (Meng-Perroni-Zhang, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is Jordan.

Idea: $Aut(X)^*|_{H^2(X,\mathbb{Q})}$ has bounded finite subgroups:

 $1 \longrightarrow \operatorname{Aut}_{\tau}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})} \longrightarrow 1.$

Lemma

Let $Aut_0(X)$ be the neutral component of Aut(X). Then

 $\operatorname{Aut}_0(X) \leq \operatorname{Aut}_{\tau}(X).$

Fix a big (1, 1)-class $[\alpha] \in H^{1,1}(X, \mathbb{R})$.

 $\operatorname{Aut}_{[\alpha]}(X) \coloneqq \{g \in \operatorname{Aut}(X) \mid g^*[\alpha] = [\alpha]\} \ge \operatorname{Aut}_{\tau}(X).$

Theorem (Meng-J, 2022)

 $[\operatorname{Aut}_{[\alpha]}(X) : \operatorname{Aut}_0(X)] < \infty.$

So $Aut(X) / Aut_0(X)$ has bounded finite subgroups and hence

Lemma

Theorem (Lee, 1976)

Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion subgroup H of G contains a (normal) abelian subgroup H_1 of index $[H : H_1] \le T$.

For any group G satisfies the theorem above, we say that G has the **T-Jordan** property.

Using the equivariant Kähler model for Fujiki's class, we proved

Theorem (Meng-J, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is T-Jordan.

Theorem (Lee, 1976)

Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion subgroup H of G contains a (normal) abelian subgroup H_1 of index $[H : H_1] \le T$.

For any group G satisfies the theorem above, we say that G has the **T-Jordan** property.

Using the equivariant Kähler model for Fujiki's class, we proved

Theorem (Meng-J, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is T-Jordan.

Theorem (Lee, 1976)

Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion subgroup H of G contains a (normal) abelian subgroup H_1 of index $[H : H_1] \le T$.

For any group *G* satisfies the theorem above, we say that *G* has the **T-Jordan** property.

Using the equivariant Kähler model for Fujiki's class, we proved

Theorem (Meng-J, 2022)

Let X be a compact complex space in Fujiki's class C. Then Aut(X) is T-Jordan.

Lemma

Consider the exact sequence of groups:

 $1 \longrightarrow N \longrightarrow G \longrightarrow H.$

- If N is T-Jordan and H has bounded torsion subgroups, then G is T-Jordan.
- Assume that the exact sequence is also right exact. If N is a torsion group and G is T-Jordan, then H is T-Jordan.

Theorem

Every smooth compact complex surface has a minimal model.

Proposition

Let X be a minimal surface. Suppose that X is neither rational nor ruled. Then X is the unique minimal model in its class of bimeromorphic equivalence, and Bim(X) = Aut(X).

Corollary

Let X be a non-Kähler compact complex surface. Then there is a unique minimal model X' bimeromorphically equivalent to X and

Theorem

Every smooth compact complex surface has a minimal model.

Proposition

Let X be a minimal surface. Suppose that X is neither rational nor ruled. Then X is the unique minimal model in its class of bimeromorphic equivalence, and Bim(X) = Aut(X).

Corollary

Let X be a non-Kähler compact complex surface. Then there is a unique minimal model X' bimeromorphically equivalent to X and

Theorem

Every smooth compact complex surface has a minimal model.

Proposition

Let X be a minimal surface. Suppose that X is neither rational nor ruled. Then X is the unique minimal model in its class of bimeromorphic equivalence, and Bim(X) = Aut(X).

Corollary

Let X be a non-Kähler compact complex surface. Then there is a unique minimal model X' bimeromorphically equivalent to X and

Theorem

Every smooth compact complex surface has a minimal model.

Proposition

Let X be a minimal surface. Suppose that X is neither rational nor ruled. Then X is the unique minimal model in its class of bimeromorphic equivalence, and Bim(X) = Aut(X).

Corollary

Let X be a non-Kähler compact complex surface. Then there is a unique minimal model X' bimeromorphically equivalent to X and

class of the surface V	(Y)	$c(\mathbf{Y})$	b.(Y)	o(V)
	$\kappa(\wedge)$	u(^)	$D_1(\wedge)$	e(^)
rational surfaces	$-\infty$	2	0	3,4
ruled surfaces of genus $g \ge 1$	$-\infty$	2	2 <i>g</i>	4(1-g)
complex tori	0	0, 1, 2	4	0
K3 surfaces	0	0, 1, 2	0	24
Enriques surfaces	0	2	0	12
bielliptic surfaces	0	2	2	0
properly elliptic surfaces	1	2	$\equiv 0 \mod 2$	≥ 0
surfaces of general type	2	2	$\equiv 0 \bmod 2$	> 0

Table 1: Kähler minimal smooth compact complex surfaces

Table 2: non-Kähler minima	l smooth com	pact complex	x surfaces
----------------------------	--------------	--------------	------------

class of the surface X	$\kappa(X)$	a(X)	$b_1(X)$	b2 (X)	e(X)
surfaces of class VII	$ -\infty$	0,1	1	≥ 0	≥ 0
primary Kodaira surfaces	0	1	3	4	0
secondary Kodaira surfaces	0	1	1	0	0
properly elliptic surfaces	1	1	$\equiv 1 \mod 2$		≥ 0

Lemma

Any compact complex surface of algebraic dimension 1 is elliptic.

This elliptic fibration $\pi\colon X\longrightarrow Y$ is called the **algebraic reduction** of X.

Lemma

The algebraic reduction $\pi: X \longrightarrow Y$ of X is Aut(X)-equivariant.

Proof.

Lemma

Any compact complex surface of algebraic dimension 1 is elliptic.

This elliptic fibration $\pi: X \longrightarrow Y$ is called the **algebraic** reduction of X.

Lemma

The algebraic reduction $\pi: X \longrightarrow Y$ of X is Aut(X)-equivariant.

Proof.

Lemma

Any compact complex surface of algebraic dimension 1 is elliptic.

This elliptic fibration $\pi: X \longrightarrow Y$ is called the **algebraic reduction** of X.

Lemma

The algebraic reduction $\pi: X \longrightarrow Y$ of X is Aut(X)-equivariant.

Proof.

Lemma

Any compact complex surface of algebraic dimension 1 is elliptic.

This elliptic fibration $\pi: X \longrightarrow Y$ is called the **algebraic reduction** of X.

Lemma

The algebraic reduction $\pi: X \longrightarrow Y$ of X is Aut(X)-equivariant.

Proof.

Class VII surfaces with $b_2 = 0$ are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)

Any class VII₀ surface with $b_2 = 0$ is biholomorphic to either a Hopf or an Inoue surface.

A **Hopf** surface is a quotient of the form $\mathbb{C}^2 \setminus \{0\}/\Gamma$, where Γ acts properly and discontinuously on $\mathbb{C}^2 \setminus \{0\}$.

Class VII surfaces with $b_2 = 0$ are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)

Any class VII_0 surface with $b_2 = 0$ is biholomorphic to either a Hopf or an Inoue surface.

A **Hopf** surface is a quotient of the form $\mathbb{C}^2 \setminus \{0\}/\Gamma$, where Γ acts properly and discontinuously on $\mathbb{C}^2 \setminus \{0\}$.

Class VII surfaces with $b_2 = 0$ are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)

Any class VII₀ surface with $b_2 = 0$ is biholomorphic to either a Hopf or an Inoue surface.

A **Hopf** surface is a quotient of the form $\mathbb{C}^2 \setminus \{0\}/\Gamma$, where Γ acts properly and discontinuously on $\mathbb{C}^2 \setminus \{0\}$.

Class VII surfaces with $b_2 = 0$ are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)

Any class VII₀ surface with $b_2 = 0$ is biholomorphic to either a Hopf or an Inoue surface.

A **Hopf** surface is a quotient of the form $\mathbb{C}^2 \setminus \{0\}/\Gamma$, where Γ acts properly and discontinuously on $\mathbb{C}^2 \setminus \{0\}$.

We use the following notation:

- Let Σ be the set of smooth compact complex surface X in class VII with the algebraic dimension a(X) = 0 and the second Betti number $b_2(X) > 0$.
- + Let $\Sigma_0\subseteq\Sigma$ be those minimal surfaces which have no curve.

Proposition 1

Let X be a smooth compact complex surface not in Σ_0 . Then Aut(X) is T-Jordan.

Proposition 2

Let X be a smooth compact complex surface in Σ_0 . Let $G \leq Aut(X)$ be a torsion subgroup. Then G is virtually abelian.

Combine the two propositions above:

Theorem 1

Let X be a smooth compact complex surface. Then any torsion subgroup $G \leq Aut(X)$ is virtually abelian.

Proposition 1

Let X be a smooth compact complex surface not in Σ_0 . Then Aut(X) is T-Jordan.

Proposition 2

Let X be a smooth compact complex surface in Σ_0 . Let $G \leq Aut(X)$ be a torsion subgroup. Then G is virtually abelian.

Combine the two propositions above:

Theorem 1

Let X be a smooth compact complex surface. Then any torsion subgroup $G \leq Aut(X)$ is virtually abelian.

Proposition 1

Let X be a smooth compact complex surface not in Σ_0 . Then Aut(X) is T-Jordan.

Proposition 2

Let X be a smooth compact complex surface in Σ_0 . Let $G \leq Aut(X)$ be a torsion subgroup. Then G is virtually abelian.

Combine the two propositions above:

Theorem 1

Let X be a smooth compact complex surface. Then any torsion subgroup $G \leq Aut(X)$ is virtually abelian.
$1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

The torsion group G is embedded into $GL_2(\mathbb{C})$.

 $1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

The torsion group G is embedded into $GL_2(\mathbb{C})$.

 $1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

Let $G \leq Aut(X)$ be an infinite torsion subgroup. The image of G in $GL(H^*(X, \mathbb{Q}))$ is finite.

By passing to a finite index subgroup, may assume $G \leq Aut^*(X)$.

Pick id $\neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G : G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

 $1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X, \mathbb{Q}))$ is finite. By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$.

Pick id $\neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G

Since *g* has finite order, [*G* : *G*'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

 $1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X, \mathbb{Q}))$ is finite. By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$. Pick $\operatorname{id} \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G : G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

 $1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X, \mathbb{Q}))$ is finite. By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$. Pick $\operatorname{id} \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G : G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

 $1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X, \mathbb{Q}))$ is finite. By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$. Pick $\operatorname{id} \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G. Since g has finite order, [G : G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

 $1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X, \mathbb{Q}))$ is finite. By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$. Pick $\operatorname{id} \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G. Since g has finite order, [G : G'] is finite.

Replacing G by the finite-index subgroup G', may assume $a \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

 $1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X, \mathbb{Q}))$ is finite. By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$. Pick $\operatorname{id} \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G. Since g has finite order, [G : G'] is finite. Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$. The fixed point set $\operatorname{Fix}(g)$ of g is finite with cardinality $|\operatorname{Fix}(g)| = b_2(X)$. Consider the action of G on the finite set $\operatorname{Fix}(g)$.

 $1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X, \mathbb{Q}))$ is finite. By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$. Pick $\operatorname{id} \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G : G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

 $1 \longrightarrow \operatorname{Aut}^{*}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)|_{H^{*}(X,\mathbb{Q})} \longrightarrow 1.$

Let $G \leq \operatorname{Aut}(X)$ be an infinite torsion subgroup. The image of G in $\operatorname{GL}(H^*(X, \mathbb{Q}))$ is finite. By passing to a finite index subgroup, may assume $G \leq \operatorname{Aut}^*(X)$. Pick $\operatorname{id} \neq g \in G$, and let G' be the centraliser of $\langle g \rangle$ in G.

Since g has finite order, [G : G'] is finite.

Replacing G by the finite-index subgroup G', may assume $g \in Z(G)$.

The fixed point set Fix(g) of g is finite with cardinality $|Fix(g)| = b_2(X)$.

Consider the action of G on the finite set Fix(g).

Conjecture

For an arbitrary minimal class VII surface with b₂ positive the following are equivalent:

- 1. It has a cycle of rational curves;
- 2. It has at least b₂ rational curves;
- 3. It contains a global spherical shell.

Remark

Assume the GSS conjecture. Let X be a smooth compact complex surface. Then $\mathsf{Aut}(\mathsf{X})$ is T-Jordan.

Conjecture

For an arbitrary minimal class VII surface with b₂ positive the following are equivalent:

- 1. It has a cycle of rational curves;
- 2. It has at least b₂ rational curves;
- 3. It contains a global spherical shell.

Remark

Assume the GSS conjecture. Let X be a smooth compact complex surface. Then Aut(X) is T-Jordan.

Tits Alternative

Theorem (Tits)

For any subgroup $G \leq GL_n(\mathbb{C})$, either

- G contains a free non-abelian subgroup, or
- G contains a solvable subgroup of finite index.

Known results:

Theorem (Campana-Wang-Zhang, 2013) Let X be a compact Kähler manifold and $G \leq Aut(X)$ a subgroup. Then either $G \geq \mathbb{Z} * \mathbb{Z}$ or G is virtually solvable. Theorem (Tits)

For any subgroup $G \leq GL_n(\mathbb{C})$, either

- G contains a free non-abelian subgroup, or
- G contains a solvable subgroup of finite index.

Known results:

Theorem (Campana-Wang-Zhang, 2013) Let X be a compact Kähler manifold and $G \leq Aut(X)$ a subgroup. Then either $G \geq \mathbb{Z} * \mathbb{Z}$ or G is virtually solvable.

Theorem 2

Let X be a compact complex space in Fujiki's class C. Then Aut(X) satisfies the Tits alternative.

Sketch proof: $\operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})} \leq \operatorname{GL}(H^2(X,\mathbb{Q}))$ satisfies the Tits alternative.

 $1 \longrightarrow \operatorname{Aut}_{\tau}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})} \longrightarrow 1$

Then Aut(X) satisfies the Tits alternative iff so does $Aut_{\tau}(X)$.

There is a bimeromorphic holomorphic map $\widetilde{X} \longrightarrow X$ from a compact Kähler manifold \widetilde{X} such that $\operatorname{Aut}_{\tau}(X)$ lifts to \widetilde{X} holomorphically.

View $Aut_{\tau}(X) \leq Aut(X')$ as a subgroup. Note that X' is kähler and Aut(X') satisfies the Tits alternative.

Theorem 2

Let X be a compact complex space in Fujiki's class C. Then Aut(X) satisfies the Tits alternative.

Sketch proof: $\operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})} \leq \operatorname{GL}(H^2(X,\mathbb{Q}))$ satisfies the Tits alternative.

$$1 \longrightarrow \operatorname{Aut}_{\tau}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(X)^*|_{H^2(X,\mathbb{Q})} \longrightarrow 1$$

Then Aut(X) satisfies the Tits alternative iff so does $Aut_{\tau}(X)$.

There is a bimeromorphic holomorphic map $\widetilde{X} \longrightarrow X$ from a compact Kähler manifold \widetilde{X} such that Aut_{τ}(X) lifts to \widetilde{X} holomorphically.

View $\operatorname{Aut}_{\tau}(X) \leq \operatorname{Aut}(X')$ as a subgroup. Note that X' is kähler and $\operatorname{Aut}(X')$ satisfies the Tits alternative.

Another point of view: By the result of [Meng-J, 2022],

 $[\operatorname{Aut}_{\tau}(X):\operatorname{Aut}_{0}(X)]<\infty.$

Then Aut(X) satisfies the Tits alternative iff so does $Aut_0(X)$.

Ad:
$$\operatorname{Aut}_0(X) \longrightarrow \operatorname{GL}(T_{\operatorname{Aut}_0(X),e})$$
, ker Ad = $Z(\operatorname{Aut}_0(X))$.

$$1 \longrightarrow Z(\operatorname{Aut}_0(X)) \longrightarrow \operatorname{Aut}_0(X) \longrightarrow \operatorname{GL}(T_{\operatorname{Aut}_0(X),e}) \longrightarrow 1.$$

Another point of view: By the result of [Meng-J, 2022],

 $[\operatorname{Aut}_{\tau}(X):\operatorname{Aut}_{0}(X)]<\infty.$

Then Aut(X) satisfies the Tits alternative iff so does $Aut_0(X)$.

$$\operatorname{Ad}$$
: $\operatorname{Aut}_0(X) \longrightarrow \operatorname{GL}(\mathcal{T}_{\operatorname{Aut}_0(X),e})$, ker $\operatorname{Ad} = Z(\operatorname{Aut}_0(X))$.

$$1 \longrightarrow Z(\operatorname{Aut}_0(X)) \longrightarrow \operatorname{Aut}_0(X) \longrightarrow \operatorname{GL}(T_{\operatorname{Aut}_0(X),e}) \longrightarrow 1.$$

Another point of view: By the result of [Meng-J, 2022],

 $[\operatorname{Aut}_{\tau}(X):\operatorname{Aut}_{0}(X)]<\infty.$

Then Aut(X) satisfies the Tits alternative iff so does $Aut_0(X)$.

$$\mathsf{Ad}: \operatorname{Aut}_0(X) \longrightarrow \mathsf{GL}(\mathcal{T}_{\operatorname{Aut}_0(X),e}), \quad \ker \operatorname{Ad} = Z(\operatorname{Aut}_0(X)).$$

$$1 \longrightarrow Z(\operatorname{Aut}_0(X)) \longrightarrow \operatorname{Aut}_0(X) \longrightarrow \operatorname{GL}(T_{\operatorname{Aut}_0(X),e}) \longrightarrow 1.$$

A **spherical shell** in a complex surface X is an open subset $U \subseteq X$ which is biholomorphic to a standard neighbourhood of S^3 in \mathbb{C}^2 . A spherical shell $U \subseteq X$ is called global if $X \setminus U$ is connected.

A **Kato** surface is a minimal class VII surface with $b_2 > 0$ which contains a global spherical shell.

By a result of Dloussky, Oeljeklaus and Toma, the GSS conjecture implies that every minimal class VII surface with *b*₂ > 0 is a Kato surface.

A **spherical shell** in a complex surface X is an open subset $U \subseteq X$ which is biholomorphic to a standard neighbourhood of S^3 in \mathbb{C}^2 . A spherical shell $U \subseteq X$ is called global if $X \setminus U$ is connected.

A **Kato** surface is a minimal class VII surface with $b_2 > 0$ which contains a global spherical shell.

By a result of Dloussky, Oeljeklaus and Toma, the GSS conjecture implies that every minimal class VII surface with $b_2 > 0$ is a Kato surface.

A **spherical shell** in a complex surface X is an open subset $U \subseteq X$ which is biholomorphic to a standard neighbourhood of S^3 in \mathbb{C}^2 . A spherical shell $U \subseteq X$ is called global if $X \setminus U$ is connected.

A **Kato** surface is a minimal class VII surface with $b_2 > 0$ which contains a global spherical shell.

By a result of Dloussky, Oeljeklaus and Toma, the GSS conjecture implies that every minimal class VII surface with $b_2 > 0$ is a Kato surface.

Theorem (Enoki, 1980/81)

An Enoki surface is biholomorphic to a compactification of a holomorphic affine line bundle over an elliptic curve.

Let X be a \mathbb{P}^1 -bundle over an elliptic curve with an infinity section C_{∞} (but possibly with no zero section) with $C_{\infty}^2 = -n$. Then the complement of C_{∞} in X can be uniquely compactified into a class VII surface S with $b_2(S) = n$ by replacing C_{∞} with a cycle of *n*-rational curves. This S is an **Enoki surface**.

If *X* also has the zero section, then *S* has an elliptic curve. In the second case we call the surface a **parabolic Inoue surface**.

Theorem (Enoki, 1980/81)

An Enoki surface is biholomorphic to a compactification of a holomorphic affine line bundle over an elliptic curve.

Let X be a \mathbb{P}^1 -bundle over an elliptic curve with an infinity section C_{∞} (but possibly with no zero section) with $C_{\infty}^2 = -n$. Then the complement of C_{∞} in X can be uniquely compactified into a class VII surface S with $b_2(S) = n$ by replacing C_{∞} with a cycle of *n*-rational curves. This S is an **Enoki surface**.

If X also has the zero section, then S has an elliptic curve. In the second case we call the surface a **parabolic Inoue surface**.

Theorem (Enoki, 1980/81)

An Enoki surface is biholomorphic to a compactification of a holomorphic affine line bundle over an elliptic curve.

Let X be a \mathbb{P}^1 -bundle over an elliptic curve with an infinity section C_{∞} (but possibly with no zero section) with $C_{\infty}^2 = -n$. Then the complement of C_{∞} in X can be uniquely compactified into a class VII surface S with $b_2(S) = n$ by replacing C_{∞} with a cycle of *n*-rational curves. This S is an **Enoki surface**.

If X also has the zero section, then S has an elliptic curve. In the second case we call the surface a **parabolic Inoue surface**.

Theorem 3

Let *X* be a smooth compact complex surface.

Assume that either $X \notin \Sigma$, or $X \in \Sigma$ but its minimal model is an Enoki surface or Inoue-Hirzebruch surface.

Then Aut(X) satisfies the Tits alternative.

Virtual Derived Length

Given a group G, its p-th derived subgroups are inductively defined by

$$G^{(0)} = G, G^{(1)} = [G, G], \cdots, G^{(i+1)} = [G^{(i)}, G^{(i)}].$$

By definition, $G^{(p)} = 1$ for some integer $p \ge 0$ if and only if G is **solvable**. We call the minimum of such p the **derived length** of G (when G is solvable) and denote it by $\ell(G)$. If G is not solvable, we set $\ell(G) = \infty$.

If G is virtually solvable, we then define the **virtual derived length** to be

$$\ell_{\mathrm{vir}}(G) = \min_{G'} \ell(G')$$

where *G*′ run through all finite-index subgroups of *G*.

Given a group G, its p-th derived subgroups are inductively defined by

$$G^{(0)} = G, G^{(1)} = [G, G], \cdots, G^{(i+1)} = [G^{(i)}, G^{(i)}].$$

By definition, $G^{(p)} = 1$ for some integer $p \ge 0$ if and only if G is **solvable**. We call the minimum of such p the **derived length** of G (when G is solvable) and denote it by $\ell(G)$. If G is not solvable, we set $\ell(G) = \infty$.

If G is virtually solvable, we then define the **virtual derived length** to be

$$\ell_{\rm vir}(G) = \min_{G'} \ell(G')$$

where G' run through all finite-index subgroups of G.

Lemma

Consider the short exact sequence of groups:

```
1 \longrightarrow N \longrightarrow G \longrightarrow H \longrightarrow 1.
```

- If N is solvable and H is virtually solvable, then G is virtually solvable with $\ell_{vir}(G) \leq \ell(N) + \ell_{vir}(H)$.
- If N is finite and H is virtually solvable, then G is virtually solvable with $\ell_{vir}(G) \leq \ell_{vir}(H) + 1$.
- G is virtually solvable iff both N and H are virtually solvable.
- If both N and H satisfy the Tits alternative, then so does G.

Lemma

Consider the short exact sequence of groups:

```
1 \longrightarrow N \longrightarrow G \longrightarrow H \longrightarrow 1.
```

- If N is solvable and H is virtually solvable, then G is virtually solvable with $\ell_{vir}(G) \leq \ell(N) + \ell_{vir}(H)$.
- If N is finite and H is virtually solvable, then G is virtually solvable with $\ell_{vir}(G) \leq \ell_{vir}(H) + 1$.
- G is virtually solvable iff both N and H are virtually solvable.
- If both N and H satisfy the Tits alternative, then so does G.

Let X be a compact Kähler manifold. For a subgroup G of Aut(X), define $G^0 := G \cap Aut_0(X)$.

Theorem (Dinh-Lin-Oguiso-Zhang, 2022)

Let X be a compact Kähler manifold of dimension $n \ge 1$. Then every subgroup $G \le Aut(X)$ of zero entropy has a finite index subgroup $G' \le G$ such that $\ell(G'/G'^0) \le n - 1$.

The invariant $\ell(G'/G'^0)$ does not depend on the choice of G', and it is called the **essential** derived length of the subgroup $G \leq Aut(X)$.

Let X be a compact Kähler manifold. For a subgroup G of Aut(X), define $G^0 := G \cap Aut_0(X)$.

Theorem (Dinh-Lin-Oguiso-Zhang, 2022)

Let X be a compact Kähler manifold of dimension $n \ge 1$. Then every subgroup $G \le Aut(X)$ of zero entropy has a finite index subgroup $G' \le G$ such that $\ell(G'/G'^0) \le n - 1$.

The invariant $\ell(G'/G'^0)$ does not depend on the choice of G', and it is called the **essential** derived length of the subgroup $G \leq Aut(X)$.

Let X be a compact Kähler manifold. For a subgroup G of Aut(X), define $G^0 := G \cap Aut_0(X)$.

Theorem (Dinh-Lin-Oguiso-Zhang, 2022)

Let X be a compact Kähler manifold of dimension $n \ge 1$. Then every subgroup $G \le Aut(X)$ of zero entropy has a finite index subgroup $G' \le G$ such that $\ell(G'/G'^0) \le n - 1$.

The invariant $\ell(G'/G'^0)$ does not depend on the choice of G', and it is called the **essential derived length** of the subgroup $G \leq Aut(X)$.
Theorem 4

Let *X* be a smooth compact complex surface.

Assume that either $X \notin \Sigma$, or $X \in \Sigma$ but its minimal model is an Enoki surface or Inoue-Hirzebruch surface.

Let $G \leq Aut(X)$ be a virtually solvable subgroup. Then the virtually derived length $\ell_{vir}(G) \leq 4$.

Remark

- 1. Currently, we are not able to prove Theorems 3 & 4 in full generality for $X \in \Sigma$.
- 2. Kato surfaces consist of four subclasses: Enoki surfaces (including parabolic Inoue surfaces), half Inoue surfaces, Inoue-Hirzebruch surfaces and intermediate surfaces.
- 3. Fix b > 0. The moduli space of framed Enoki surfaces with $b_2 = b$ is an open subset of the moduli space of framed Kato surfaces with $b_2 = b$.
- 4. When X is a parabolic Inoue surface, it has been proved that Aut(X) is virtually abelian.

Questions?

Thank you!